Category Archives: Product Catalog

China manufacturer Xyz Stage Axis Z Precision CHINAMFG Linear Guide Rail Price a/c vacuum pump

Product Description

Heavy load domestic high quality linear guide and linear blocks

Company Profile

HangZhou Wangong Precision Machinery Co., Ltd.

About US: Professional  producing Ball screw, Linear guide, linear shaft, Linear roller guide and linear motion bearings
HangZhou Wangong Precision Machinery Co., Ltd was founded in 2008 and is located in HangZhou City, ZHangZhoug Pro. China. We ahve built a R&D and profuction base of more than 52000m, Our expertise lies in manufacturing precision transmission components, As a distinguished high-tech enterprise, we seamlessly integrate research and development, production, sales, and service. We have successfully incorporated advanced equipment and cutting-edge technologies from renowned countries like Germany, Japan and ZheJiang .

Product Description

1,Intruduction

Our domestic square linear rail is very easy to interchange each other, or CHINAMFG parts. Because our size are the same as CHINAMFG brand. Therefore You will save the cost, but can be up to your requirement’s quality.
Linear guide is consisted of rail, block, rolling elements, retainer, recirculator, seal etc. By using the rolling elements, such as balls or rollers between the rail and block, the linear guide can achieve high precision linear motion. Linear guide block is divied to flange type and slim type without flange.or Seal type block, Standard type block, Double bearing type block, Short type block.  Also,
linear block is divided to high load capacity with standard block lenth and ultra high load capacity with longer block length.

2, All kinds of heavy load linear guides and blocks
 

            HGH-CA HGW-CC          EGH-CA/SA

    HGH-HA             HGW-HC              EGW-CA/SA

3,Products specifications
 

Brand name ERSK, (they are able to interchange into CHINAMFG linear guide and blocks)
Product name Linear guide and block
Model no. HGH/HGW/EGH/EGW
Material S55C high carbon steel 
Service after-sale service and technical assistance as per customer’s
requirement and needs. Customers are always given quickly
support.
Length Max:6000mm, other length as your requirement
Delivery time Base on customer required quantity,by negotiated
Products packing Plastic bag+box case or wooden case, or according to
customer’s requestment
Sample Sample order could be available
Payment terms T/t or L/C are available for large orders, Paypal and West
Union for small orders
Shipping method DHL,UPS,TNT,FEDEX,EMS,Airfreight and by sea, By
negotiated
Quality ISO9001-2008

4, Data sheet

Related products

ERSK manufacturer main products

Our Advantages

As a distinguished high-tech enterprise, we seamlessly integrate research and development, production, sales, and service. We have successfully incorporated advanced equipment and cutting-edge technologies from renowned countries like Germany, Japan, and ZheJiang . Our commitment to innovation has led to the acquisition of multiple product design patents, and we proudly adhere to ISO9001 certification standards.

Our service

Our Team:
Professional technicians, high-quality production workers, 24-hour salespersons
OUR PHILOSOPHY:
Integrity is at the core of our values, and providing excellent 
service is our top priority. We begin by understanding your 
needs and strive to ensure your utmost satisfaction, forging a mutually beneficial relationship.
OUR MISSION:
Through technology and innovation, we strive to enhance 
product quality and deliver exceptional products and services 
to you.
OUR VISION:
We are firmly dedicated to CHINAMFG the pinnacle of highquality standards and venturing into the realm of world-class 
advanced manufacturing industries.
We are excited about the opportunity to work with you and 
exceed your expectations.

 

 

 

Application: Warehouse Crane, Shipboard Crane, Goods Yard Crane, Building Crane, Workshop Crane, Machines
Material: S55c
Structure: Linear Motion Transmission
Samples:
US$ 20/Meter
1 Meter(Min.Order)

|

Order Sample

linear guide and linear block
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

motor base

Are there any energy efficiency benefits associated with specific types of motor slide rails?

Yes, specific types of motor slide rails can offer energy efficiency benefits. Here’s a detailed explanation:

The energy efficiency of motor slide rails is primarily influenced by their design, materials, and features. While the slide rails themselves do not directly impact the energy efficiency of the motor, certain characteristics can contribute to overall system efficiency. Here are some factors to consider:

1. Friction and Smooth Movement:

Motor slide rails that are designed to reduce friction and enable smooth movement can contribute to energy efficiency. By minimizing frictional forces, the motor requires less energy to overcome resistance and move along the slide rails. This can result in improved overall efficiency and reduced energy consumption.

2. Lubrication and Maintenance:

Proper lubrication of motor slide rails is crucial for minimizing friction and optimizing energy efficiency. Well-lubricated slide rails can reduce wear and frictional losses, allowing the motor to operate more efficiently. Regular maintenance, including lubricant checks and replacements, ensures that the slide rails maintain their energy-efficient performance over time.

3. Design and Materials:

The design and materials used in motor slide rails can also impact energy efficiency. Certain materials, such as those with low coefficients of friction or high strength-to-weight ratios, can reduce energy losses and improve overall efficiency. Additionally, the design of the slide rails, including their shape, profile, and load-bearing capacities, can optimize the motor’s performance and minimize energy waste.

4. Damping and Vibration Reduction:

Motor slide rails that incorporate damping mechanisms or vibration-reducing features can enhance energy efficiency. Excessive vibrations can lead to energy losses and increased wear on the motor. Slide rails designed to absorb or dampen vibrations can help maintain stable and efficient motor operation, resulting in energy savings.

5. Environmental Considerations:

Specific types of motor slide rails may also offer energy efficiency benefits in certain environmental conditions. For example, slide rails that are resistant to corrosion, dust, or moisture can help maintain their performance and efficiency over time. By minimizing the impact of environmental factors, the motor can operate optimally, reducing energy waste and improving efficiency.

It’s important to note that while specific types of motor slide rails can offer energy efficiency benefits, the overall energy efficiency of a motor system is influenced by multiple factors, including motor design, control systems, and operational practices. The selection of energy-efficient slide rails should be considered within the broader context of the entire motor system to maximize energy savings.

In summary, certain types of motor slide rails can contribute to energy efficiency by reducing friction, enabling smooth movement, utilizing appropriate materials, incorporating damping mechanisms, and considering environmental factors. By selecting and maintaining energy-efficient slide rails, it is possible to optimize the performance and energy efficiency of motor systems, leading to potential energy savings over the long term.

motor base

What considerations should be taken into account when selecting motor slide rails for a specific application?

When selecting motor slide rails for a specific application, several considerations should be taken into account. Here’s a detailed explanation:

1. Load Capacity:

One of the primary considerations is the load capacity of the motor slide rails. The slide rails should be able to support the weight and forces exerted by the motor and any additional components or loads attached to it. It’s important to determine the maximum load that the slide rails will be subjected to in the specific application and choose rails with an appropriate load rating to ensure safe and reliable operation.

2. Travel Distance and Stroke Length:

The required travel distance or stroke length of the motor slide rails is another important factor to consider. The slide rails should be able to accommodate the desired range of movement for the motor, allowing for the necessary adjustments and positioning within the application. It’s crucial to select slide rails with a stroke length that meets the specific requirements of the application, taking into account any space limitations or operational constraints.

3. Mounting Compatibility:

Consider the compatibility of the motor slide rails with the existing mounting configuration in the application. Check whether the slide rails can be easily integrated with the motor mounts, brackets, or plates used in the system. Ensure that the mounting options and hole patterns of the slide rails align with the motor’s mounting requirements to facilitate a secure and proper attachment.

4. Dimensional Requirements:

Evaluate the dimensional requirements of the motor slide rails in relation to the available space and constraints in the application. Consider the overall length, width, and height of the slide rails to ensure they can fit within the designated installation area. It’s important to account for any clearance requirements, surrounding components, or spatial limitations that may impact the selection of slide rail dimensions.

5. Environmental Factors:

Take into account the environmental conditions in which the motor slide rails will operate. Consider factors such as temperature, humidity, exposure to dust or contaminants, and potential vibrations or shocks. Ensure that the selected slide rails are designed to withstand and perform reliably in the specific environmental conditions of the application. Look for features such as corrosion resistance, sealing or protective coatings, and robust construction that can enhance the durability and longevity of the slide rails.

6. Precision and Accuracy:

If precise motor positioning is critical for the application, consider the level of precision and accuracy required from the slide rails. Some applications may demand high repeatability and tight tolerances in motor adjustments. In such cases, look for slide rails that offer fine adjustment mechanisms, graduated scales, or other features that enable precise positioning and alignment of the motor.

7. Application-Specific Requirements:

Consider any specific requirements or challenges posed by the application. This could include factors such as speed requirements, duty cycles, special safety considerations, or unique industry-specific standards. Ensure that the selected motor slide rails meet these specific requirements and comply with relevant standards or regulations.

By considering these factors, you can make an informed decision when selecting motor slide rails for a specific application. It’s important to balance the technical requirements, environmental conditions, and application-specific factors to choose slide rails that provide optimal performance, reliability, and longevity within the intended application.

In summary, when selecting motor slide rails for a specific application, considerations should include load capacity, travel distance, mounting compatibility, dimensional requirements, environmental factors, precision and accuracy needs, and any application-specific requirements or challenges.

motor base

What materials are commonly used in the construction of durable and reliable motor slide rails?

In the construction of durable and reliable motor slide rails, several materials are commonly used. Here’s a detailed explanation:

1. Steel:

Steel is one of the most widely used materials for motor slide rails due to its excellent strength, durability, and load-bearing capabilities. Steel slide rails offer high rigidity and resistance to bending or deformation, ensuring stable and secure motor installations. Different types of steel, such as carbon steel or stainless steel, can be utilized based on the specific application requirements and environmental conditions.

2. Aluminum:

Aluminum is another popular material choice for motor slide rails, especially in applications where weight reduction is a consideration. Aluminum slide rails offer a good balance of strength and lightweight characteristics. They are corrosion-resistant, making them suitable for indoor and outdoor installations. Aluminum slide rails are commonly used in applications where weight reduction, ease of handling, and corrosion resistance are important factors.

3. Cast Iron:

Cast iron is known for its exceptional strength and durability, making it suitable for heavy-duty motor applications. Cast iron slide rails provide superior load-bearing capabilities and resistance to wear and tear. They are commonly used in industrial settings where robustness and longevity are crucial. Cast iron slide rails can withstand high loads and provide stability and rigidity for reliable motor positioning and alignment.

4. Stainless Steel:

Stainless steel slide rails offer excellent corrosion resistance, making them ideal for applications where exposure to moisture, chemicals, or harsh environments is a concern. Stainless steel is highly durable, resistant to rust and staining, and can withstand high loads. These properties make stainless steel slide rails suitable for a wide range of industries, including food processing, pharmaceuticals, marine, and outdoor applications.

5. Engineering Plastics:

Certain engineering plastics, such as acetal (polyoxymethylene) or nylon, are used in the construction of motor slide rails. These materials offer good mechanical properties, such as low friction, high wear resistance, and self-lubricating characteristics. Engineering plastic slide rails are lightweight, corrosion-resistant, and can provide smooth and quiet operation. They are often utilized in applications where noise reduction, chemical resistance, or lightweight construction is desired.

6. Composite Materials:

Composite materials, such as fiberglass-reinforced plastic (FRP), are used in some motor slide rails. These materials offer a combination of strength, rigidity, and corrosion resistance. Composite slide rails are lightweight, non-conductive, and can provide excellent resistance to chemicals and environmental factors. They are commonly used in applications where weight reduction, electrical insulation, or resistance to corrosive substances is important.

The selection of materials for motor slide rails depends on various factors, including the specific application requirements, load capacities, environmental conditions, and desired performance characteristics. Manufacturers consider these factors to choose the most suitable material that ensures durability, reliability, and optimal performance of the motor slide rail system.

In summary, commonly used materials in the construction of durable and reliable motor slide rails include steel, aluminum, cast iron, stainless steel, engineering plastics, and composite materials. Each material has its specific advantages and is chosen based on factors such as strength, durability, load-bearing capacity, corrosion resistance, weight reduction, and environmental considerations.

China manufacturer Xyz Stage Axis Z Precision CHINAMFG Linear Guide Rail Price   a/c vacuum pump		China manufacturer Xyz Stage Axis Z Precision CHINAMFG Linear Guide Rail Price   a/c vacuum pump
editor by CX 2023-12-06

China Best Sales Long Life CNC Linear Guide Rail vacuum pump design

Product Description

Product Description

Description: Product name: Square linear rail guide with block

1,Intruduction

Our domestic square linear rail is very easy to interchange each other, or CHINAMFG parts. Because our size are the same as CHINAMFG brand. Therefore You will save the cost, but can be up to your requirement’s quality.
Linear guide is consisted of rail, block, rolling elements, retainer, recirculator, seal
etc. By using the rolling elements, such as balls or rollers between the rail and
block, the linear guide can achieve high precision linear motion.
Linear guide block is divied to flange type and slim type without flange.or Seal type
block, Standard type block, Double bearing type block, Short type block.  Also,
linear block is divided to high load capacity with standard block lenth and ultra high
load capacity with longer block length.

2,Feature at a glance


3,Products spections

Brand name ERSK, HIWIN
Product name Linear guide and block
Model no. SBR/TBR/HGH/HGW/EGH/EGW/MGN
Material quality chrome steel and stainless steel Aluminium alloy
Service after-sale service and technical assistance as per customer’s
requirement and needs. Customers are always given quickly
support.
Length Max:6000mm, other length as your requirement
Delivery time Base on customer required quantity,by negotiated
Products packing Plastic bag+box case or wooden case, or according to
customer’s requestment
Sample Sample order could be available
Payment terms T/t or L/C are available for large orders, Paypal and West
Union for small orders
Shipping method DHL,UPS,TNT,FEDEX,EMS,Airfreight and by sea, By
negotiated
Quality ISO9001-2008

4,All kinds of linear guide rail and block modles compared: 

5,Production Flow

Our Advantages

6,Our advantage

Related products

7,Our main products

There are many kinds of products we can offer, If you are interested in them, please click the picture and see the details.

Packaging & Shipping

8,Packaging and Shipping

Company Profile

9,Company information

10, Our principle:

Quality first, credibility is the key, the price followed

 

Over service

11,Our Service


Welcome to make inquiry!    

Bearing:Linear Xihu (West Lake) Dis.way
(1).Acceptable price with good quality
(2).Prompt delivery and good service
(3).Low noise and long life
(4).The precision is international standard
(5We can make bearings in your drawings or samples,and if anything of interest
   to you,please fell free to contact to me.Thanks!

Application: Warehouse Crane, Shipboard Crane, Goods Yard Crane, Building Crane, Workshop Crane, Machines
Material: S55c
Structure: Linear Motion Transmission
Installation: Automatic Machinery
Driven Type: Ball Screw Motor
Carrying Capacity: Weight Level
Samples:
US$ 40/Meter
1 Meter(Min.Order)

|

Customization:
Available

|

motor base

Can motor slide rails be retrofitted to existing motor installations, or are they primarily for new setups?

Motor slide rails can be retrofitted to existing motor installations, providing flexibility and adaptability to various setups. Here’s a detailed explanation:

Motor slide rails are versatile components that can be used in both new motor setups and retrofitting applications. They are designed to facilitate linear motion and provide a controlled mechanism for moving motors along a defined path. The retrofitting capability of motor slide rails allows for the upgrade or modification of existing motor installations without the need for significant structural changes or replacements.

When considering the retrofitting of motor slide rails to an existing motor installation, several factors need to be taken into account:

1. Compatibility:

It is important to ensure that the motor slide rails are compatible with the existing motor and the surrounding components. This includes considering the dimensions, weight, and mounting requirements of the motor. The slide rails should be able to support the weight of the motor and any additional loads. Additionally, the slide rails should align with the mounting brackets or other attachment points of the motor.

2. Space Constraints:

The available space and layout of the existing motor installation should be considered when retrofitting motor slide rails. The slide rails should fit within the available space without interfering with other equipment or components. It may be necessary to make adjustments or modifications to accommodate the slide rails, such as rearranging surrounding equipment or repositioning existing components.

3. Installation Considerations:

The retrofitting process of motor slide rails requires careful planning and installation. It is important to follow the manufacturer’s instructions and guidelines for proper installation. This may involve disassembling parts of the existing motor installation, attaching the slide rails securely, and reassembling the components. Attention should be given to proper alignment, attachment points, and ensuring smooth movement along the slide rails.

4. Performance and Safety:

Retrofitting motor slide rails to an existing motor installation can offer improved performance and safety. The controlled linear motion provided by the slide rails can enhance the stability, positioning accuracy, and ease of maintenance of the motor. It is essential to assess the potential benefits and any safety considerations associated with retrofitting slide rails to ensure they align with the goals and requirements of the specific application.

In summary, motor slide rails can be retrofitted to existing motor installations, offering flexibility and adaptability to various setups. The retrofitting process requires considering compatibility, space constraints, installation considerations, and the potential performance and safety benefits. By carefully evaluating these factors and following proper installation procedures, motor slide rails can be successfully incorporated into existing motor setups, allowing for improved functionality and ease of maintenance.

motor base

What safety features should users consider when working with motor slide rails?

When working with motor slide rails, users should consider several safety features to ensure a safe working environment. Here’s a detailed explanation:

1. Locking Mechanisms:

Motor slide rails should be equipped with reliable locking mechanisms to secure the motor in place during maintenance or when the motor is not in use. Locking mechanisms, such as locking pins or levers, prevent unintentional movement of the motor along the rails, reducing the risk of accidents or injuries. Users should ensure that the locking mechanisms are engaged before performing any maintenance tasks or when the motor needs to remain stationary.

2. Load Capacity and Overload Protection:

When selecting motor slide rails, users should consider the load capacity of the rails to ensure they can safely support the weight of the motor and any associated components. Exceeding the load capacity can lead to rail failure, causing accidents or damage. Additionally, it is advisable to have overload protection mechanisms in place to prevent excessive loads from being applied to the slide rails. This can include measures such as load sensors, limit switches, or overload clutches that automatically disengage the motor in case of excessive load, preventing damage or injury.

3. Anti-Tip Mechanisms:

Anti-tip mechanisms are important safety features that prevent the motor from tipping over when it is moved along the slide rails. These mechanisms typically consist of stabilizing legs or brackets that provide stability and prevent the motor from becoming unbalanced during operation or maintenance. Users should ensure that the anti-tip mechanisms are properly engaged and functional before moving the motor along the slide rails.

4. Electrical Safety:

When working with motor slide rails, users should observe electrical safety precautions to prevent electrical shocks or hazards. This includes disconnecting the motor from the power supply before performing any maintenance tasks, using appropriate personal protective equipment (PPE) such as insulated gloves or tools when working with electrical components, and following proper lockout/tagout procedures to ensure the motor is de-energized and cannot be accidentally started during maintenance activities.

5. Clear Access and Workspace:

Users should ensure that there is a clear and unobstructed access pathway and workspace around the motor slide rails. This helps prevent trips, slips, or falls during maintenance activities. It is important to keep the area around the motor slide rails free from debris, tools, or other objects that could impede safe movement or cause accidents.

6. Proper Training and Familiarity:

Users should receive proper training on the safe operation and maintenance procedures specific to the motor slide rail system they are working with. They should be familiar with the manufacturer’s instructions, safety guidelines, and any specific precautions related to the installation, adjustment, or maintenance of the slide rails. Adequate knowledge and understanding of the equipment and its safety features are crucial for safe operation and maintenance practices.

7. Regular Inspection and Maintenance:

Regular inspection and maintenance of the motor slide rails are essential for identifying any safety concerns or potential issues. Users should inspect the slide rails for signs of wear, damage, or deterioration and take appropriate actions, such as replacing worn-out components or addressing any safety hazards. Proper lubrication, cleaning, and maintenance practices should be followed as per the manufacturer’s recommendations to ensure the safe and reliable operation of the motor slide rails.

Overall, users should consider safety features such as locking mechanisms, load capacity and overload protection, anti-tip mechanisms, electrical safety precautions, clear access and workspace, proper training and familiarity with the equipment, and regular inspection and maintenance when working with motor slide rails. By adhering to these safety features, users can create a safer working environment and minimize the risk of accidents or injuries.

In summary, users should consider various safety features, including locking mechanisms, load capacity, anti-tip mechanisms, electrical safety, clear access and workspace, proper training, and regular inspection and maintenance, when working with motor slide rails.

motor base

How do motor slide rails contribute to the flexibility of motor positioning and alignment?

In the context of electric motor installations, motor slide rails play a significant role in providing flexibility for motor positioning and alignment. Here’s a detailed explanation:

1. Horizontal Adjustability:

Motor slide rails allow for horizontal adjustability, enabling precise motor positioning and alignment. By sliding the motor along the rails, users can make fine adjustments to achieve the desired alignment with the driven equipment. This horizontal adjustability ensures that the motor shaft is parallel and co-linear with the driven shaft, optimizing power transmission efficiency and minimizing wear and tear on both the motor and the driven components.

2. Vertical Adjustability:

In addition to horizontal adjustability, some motor slide rail systems also offer vertical adjustability. This feature allows users to adjust the motor’s height or elevation within the installation. Vertical adjustability is particularly useful when aligning the motor with existing equipment or accommodating specific space constraints. It provides flexibility to position the motor at the optimal height for efficient power transfer and compatibility with the driven system.

3. Customizable Mounting Configurations:

Motor slide rails support customizable mounting configurations, further enhancing flexibility in motor positioning and alignment. These rails often feature multiple mounting holes or slots along their length, allowing users to choose different attachment points for the motor. This flexibility enables users to adapt the motor slide rail system to match the specific dimensions and requirements of the installation. Customizable mounting configurations are particularly advantageous when retrofitting motors into existing systems or when dealing with non-standard motor or equipment sizes.

4. Accommodation of Space Limitations:

Motor slide rails provide a solution for installations with space limitations. In restricted spaces, where direct access to the motor or driven equipment may be limited, motor slide rails allow users to position the motor in a more accessible location. By sliding the motor along the rails, technicians can gain easy access to various motor components for maintenance, inspection, or repairs. This accommodation of space limitations ensures that critical maintenance tasks can be performed efficiently, reducing downtime and improving serviceability.

5. Alignment Fine-Tuning:

Motor slide rails enable precise alignment fine-tuning even after the initial installation. If adjustments are needed due to changes in operating conditions or system requirements, the motor can be easily moved along the rails to achieve the desired alignment. This fine-tuning capability ensures that the motor remains optimally aligned over time, maintaining efficient power transmission and prolonging the life of the motor and other system components.

6. Compatibility with Different Motor Sizes:

Motor slide rails are designed to accommodate different motor sizes and mounting configurations. They are often modular in nature, allowing for easy adjustment and customization to match the specific dimensions of the motor. Whether installing small motors or larger industrial-grade motors, motor slide rails provide the flexibility to position and align motors of varying sizes, ensuring compatibility with the chosen motor and the requirements of the application.

In summary, motor slide rails contribute to the flexibility of motor positioning and alignment through horizontal and vertical adjustability, customizable mounting configurations, accommodation of space limitations, alignment fine-tuning capabilities, and compatibility with different motor sizes. These features empower users to achieve precise motor alignment, optimize power transmission efficiency, and adapt the motor installation to specific space constraints or equipment configurations.

China Best Sales Long Life CNC Linear Guide Rail   vacuum pump design		China Best Sales Long Life CNC Linear Guide Rail   vacuum pump design
editor by CX 2023-11-27

China Custom CZPT Lower Noise Cycloidal Gearbox Eccentric Motor ac motor

Product Description

XWD2/ XWD3/XWD4/XWD5/XWD6/XWD7 /XWD8 gearbox with ac motor 

Cycloidal reducer adopts meshing cycloid pin gear, planetary transmission principle, so usually also called planetary cycloid reducer.  Planetary cycloidal reducer can be widely used in petroleum, environmental protection, chemical, cement, transport, textile, pharmaceutical, food, printing, lifting, mining, metallurgy, construction, power generation and other industries.
      As a drive or reduction gear,  the machine is divided into horizontal, vertical, biaxial and straight league assembly way,etc.  Its unique stable structure can replace ordinary cylindrical gear reducer and worm gear reducer in many cases. Therefore, planetary cycloid gear reducer is widely used in various industries and fields, and is generally welcomed by the majority of users.

XWD/BWY cycloid  reducer motor details:

B series:

BW basedoard horizontal installed double axes type 

BL flange vertical installed double axes type

BWY  basedoard horizontal installed motor direct-connection type

BLY   flange vertical installed motor direct-connection type

X series:

XW basedoard horizontal installed double axes type

XL flange vertical installed double axes type

XWD basedoard horizontal installed motor direct-connection type

XLD flange vertical installed motor direct-connection type

 

 

FAQ
1, Q:what\’s your MOQ for ac gearbox motor  ?
A: 1pc is ok for each type electric gear box  motor 

2, Q: What about your warranty for your induction speed reducer motor ?
A: 1 year ,but except man-made destroyed

3, Q: which payment way you can accept ?
A: TT, western union .

4, Q: how about your payment way ?
A: 100%payment in advanced less $5000 ,30% payment in advanced payment , 70% payment before sending over $5000.

5, Q: how about your packing of speed reduction motor  ?
A: plywood case ,if size is small  ,we will pack with pallet for less 1 container 

6, Q: What information should be given, if I buy electric helical geared motor  from you ?
A: rated power,  ratio or output speed,type ,voltage , mounting way , quantity , if more is better , 
 

Application: Motor, Machinery, Agricultural Machinery
Function: Speed Changing, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Single-Step
Customization:
Available

|

Customized Request

Motor

What Is a Gear Motor?

A gear motor is an electric motor coupled with a gear train. It uses either DC or AC power to achieve its purpose. The primary benefit of a gear reducer is its ability to multiply torque while maintaining a compact size. The trade-off of this additional torque comes in the form of a reduced output shaft speed and overall efficiency. However, proper gear technology and ratios provide optimum output and speed profiles. This type of motor unlocks the full potential of OEM equipment.

Inertial load

Inertial load on a gear motor is the amount of force a rotating device produces due to its inverse square relationship with its inertia. The greater the inertia, the less torque can be produced by the gear motor. However, if the inertia is too high, it can cause problems with positioning, settling time, and controlling torque and velocity. Gear ratios should be selected for optimal power transfer.
The duration of acceleration and braking time of a gear motor depends on the type of driven load. An inertia load requires longer acceleration time whereas a friction load requires breakaway torque to start the load and maintain it at its desired speed. Too short a time period can cause excessive gear loading and may result in damaged gears. A safe approach is to disconnect the load when power is disconnected to prevent inertia from driving back through the output shaft.
Inertia is a fundamental concept in the design of motors and drive systems. The ratio of mass and inertia of a load to a motor determines how well the motor can control its speed during acceleration or deceleration. The mass moment of inertia, also called rotational inertia, is dependent on the mass, geometry, and center of mass of an object.

Applications

There are many applications of gear motors. They provide a powerful yet efficient means of speed and torque control. They can be either AC or DC, and the two most common motor types are the three-phase asynchronous and the permanent magnet synchronous servomotor. The type of motor used for a given application will determine its cost, reliability, and complexity. Gear motors are typically used in applications where high torque is required and space or power constraints are significant.
There are two types of gear motors. Depending on the ratio, each gear has an output shaft and an input shaft. Gear motors use hydraulic pressure to produce torque. The pressure builds on one side of the motor until it generates enough torque to power a rotating load. This type of motors is not recommended for applications where load reversals occur, as the holding torque will diminish with age and shaft vibration. However, it can be used for precision applications.
The market landscape shows the competitive environment of the gear motor industry. This report also highlights key items, income and value creation by region and country. The report also examines the competitive landscape by region, including the United States, China, India, the GCC, South Africa, Brazil, and the rest of the world. It is important to note that the report contains segment-specific information, so that readers can easily understand the market potential of the geared motors market.

Size

The safety factor, or SF, of a gear motor is an important consideration when selecting one for a particular application. It compensates for the stresses placed on the gearing and enables it to run at maximum efficiency. Manufacturers provide tables detailing typical applications, with multiplication factors for duty. A gear motor with a SF of three or more is suitable for difficult applications, while a gearmotor with a SF of one or two is suitable for relatively easy applications.
The global gear motor market is highly fragmented, with numerous small players catering to various end-use industries. The report identifies various industry trends and provides comprehensive information on the market. It outlines historical data and offers valuable insights on the industry. The report also employs several methodologies and approaches to analyze the market. In addition to providing historical data, it includes detailed information by market segment. In-depth analysis of market segments is provided to help identify which technologies will be most suitable for which applications.
Motor

Cost

A gear motor is an electric motor that is paired with a gear train. They are available in AC or DC power systems. Compared to conventional motors, gear reducers can maximize torque while maintaining compact dimensions. But the trade-off is the reduced output shaft speed and overall efficiency. However, when used correctly, a gear motor can produce optimal output and mechanical fit. To understand how a gear motor works, let’s look at two types: right-angle geared motors and inline geared motors. The first two types are usually used in automation equipment and in agricultural and medical applications. The latter type is designed for rugged applications.
In addition to its efficiency, DC gear motors are space-saving and have low energy consumption. They can be used in a number of applications including money counters and printers. Automatic window machines and curtains, glass curtain walls, and banknote vending machines are some of the other major applications of these motors. They can cost up to 10 horsepower, which is a lot for an industrial machine. However, these are not all-out expensive.
Electric gear motors are versatile and widely used. However, they do not work well in applications requiring high shaft speed and torque. Examples of these include conveyor drives, frozen beverage machines, and medical tools. These applications require high shaft speed, so gear motors are not ideal for these applications. However, if noise and other problems are not a concern, a motor-only solution may be the better choice. This way, you can use a single motor for multiple applications.
Motor

Maintenance

Geared motors are among the most common equipment used for drive trains. Proper maintenance can prevent damage and maximize their efficiency. A guide to gear motor maintenance is available from WEG. To prevent further damage, follow these maintenance steps:
Regularly check electrical connections. Check for loose connections and torque them to the recommended values. Also, check the contacts and relays to make sure they are not tangled or damaged. Check the environment around the gear motor to prevent dust from clogging the passageway of electric current. A proper maintenance plan will help you identify problems and extend their life. The manual will also tell you about any problems with the gearmotor. However, this is not enough – it is important to check the condition of the gearbox and its parts.
Conduct visual inspection. The purpose of visual inspection is to note any irregularities that may indicate possible problems with the gear motor. A dirty motor may be an indication of a rough environment and a lot of problems. You can also perform a smell test. If you can smell a burned odor coming from the windings, there may be an overheating problem. Overheating can cause the windings to burn and damage.
Reactive maintenance is the most common method of motor maintenance. In this type of maintenance, you only perform repairs if the motor stops working due to a malfunction. Regular inspection is necessary to avoid unexpected motor failures. By using a logbook to document motor operations, you can determine when it is time to replace the gear motor. In contrast to preventive maintenance, reactive maintenance requires no regular tests or services. However, it is recommended to perform inspections every six months.

China Custom CZPT Lower Noise Cycloidal Gearbox Eccentric Motor   ac motor	China Custom CZPT Lower Noise Cycloidal Gearbox Eccentric Motor   ac motor
editor by CX 2023-11-23

China OEM High Quality Brushed Gdm06 CZPT Electric Micro Small DC Gear Motor with Gearbox 10W/15W/20W/25W/30W/40W/60W/90W/120W/180W/200W with high quality

Product Description

What is applications use gear motor?
Electric gear motors are used in various applications that require for high output torque and low output rotation speed.

What is gear motor?
Gear motor is combined electric motor with gear reducer box.
 

Would you like to be GPG motor wholesaler,dealer,distributor,stockist?

GPG motor can improve your business.
 

Taibang gear motor is ideal drive for all kinds of industrial automation products for both industrial and commercial application.
What you can be provided by us is steady quality products(quite and efficient performance gear motor) and engineering solution.

The main products is induction motor, reversible motor, DC brush gear motor, DC brushless gear motor, CH/CV medium gear motors, planetary gear motor,worm gear motor,right angle solid and hollow shaft gear motor, etc, which used widely in various fields of manufacturing pipelining, transportation, food, medicine, printing, fabric, packing, office, apparatus, entertainment etc, and is the preferred and matched product for automatic machine. 

1)The stator is made of high quality low carbon steel seamless steel tube and ferrite permanent magnet.

2)The rotor consists of silicon steel sheet,copper coil,commutator and insulating material,etc.

3)The rotor shaft is made of high performance medium carbon alloy steel and processed by special technics.There are round shaft and gear shaft.

4)The bearing and oil seal is selected from well-known brand to ensure good running performance and sealing effect.

5)The wire is made from high temperature resistant and flame retardant material.

Should you any questions,please feel free to contact Ms Susan Liu directly.
Please leave message or send inquiry.I will be back to you asap.

Model Instruction
 

Model Gear Head  Rated Power
 
Voltage
 
Ampere Speed Torque Shell Diameter Motor Height
W   V A r/min mN.m  mm 08

GDM08-SC

4GN 30 12 4.6 1500 190.9 Φ69 105
1800 159.08
2200 130.2
24 2.1 1500 190.9
1800 159.08
2200 130.2

 

Reduction Ratio       L1                     L2                  L3            
1:3~1:20       105mm        32mm     137mm
1:25~1:300       105mm        44mm     149mm

 
FAQ

Q: How about your company?
A:We are gear motor factory located in HangZhou city of China and established in 1995.We have more than 1200 workers.Our main product  is AC micro gear motor 6W to 250W, AC small gear motor 100W to 3700W,brush DC motor 10W to 400W,brushless motor 10W to 750W,drum motor 60W to 3700W ,planetary gearbox , and worm gearbox,etc.

Q: How to choose a suitable motor?
A:If you have gear motor pictures or drawings to show us, or you tell us detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can suggest suitable motor per your request .

Q: Can you make the gear motor with customize specifications ?
Yes, we can customize per your request for the voltage, speed, torque and shaft size and shape. If you need additional wires or cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: What’s your lead time?
A: Usually our regular standard product will need 10-15days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

Q: What is your MOQ?
A: If delivery by sea ,the minimum order is 100 pieces, if deliver by express, there is no limit.

Q: Do you have the item in stock?
A: I am sorry we do not have the item in stock, All products are made with orders.

Q: How to contact us ?
A: You can send us enquiry . 
 

Application: Industrial, Household Appliances, Power Tools
Operating Speed: Constant Speed
Excitation Mode: Compound
Function: Control
Casing Protection: Protection Type
Number of Poles: 4
Samples:
US$ 85/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Motor

Dynamic Modeling of a Planetary Motor

A planetary gear motor consists of a series of gears rotating in perfect synchrony, allowing them to deliver torque in a higher output capacity than a spur gear motor. Unlike the planetary motor, spur gear motors are simpler to build and cost less, but they are better for applications requiring lower torque output. That is because each gear carries the entire load. The following are some key differences between the two types of gearmotors.

planetary gear system

A planetary gear transmission is a type of gear mechanism that transfers torque from one source to another, usually a rotary motion. Moreover, this type of gear transmission requires dynamic modeling to investigate its durability and reliability. Previous studies included both uncoupled and coupled meshing models for the analysis of planetary gear transmission. The combined model considers both the shaft structural stiffness and the bearing support stiffness. In some applications, the flexible planetary gear may affect the dynamic response of the system.
In a planetary gear device, the axial end surface of the cylindrical portion is rotatable relative to the separating plate. This mechanism retains lubricant. It is also capable of preventing foreign particles from entering the planetary gear system. A planetary gear device is a great choice if your planetary motor’s speed is high. A high-quality planetary gear system can provide a superior performance than conventional systems.
A planetary gear system is a complex mechanism, involving three moving links that are connected to each other through joints. The sun gear acts as an input and the planet gears act as outputs. They rotate about their axes at a ratio determined by the number of teeth on each gear. The sun gear has 24 teeth, while the planet gears have three-quarters that ratio. This ratio makes a planetary motor extremely efficient.

planetary gear train

To predict the free vibration response of a planetary motor gear train, it is essential to develop a mathematical model for the system. Previously, static and dynamic models were used to study the behavior of planetary motor gear trains. In this study, a dynamic model was developed to investigate the effects of key design parameters on the vibratory response. Key parameters for planetary gear transmissions include the structure stiffness and mesh stiffness, and the mass and location of the shaft and bearing supports.
The design of the planetary motor gear train consists of several stages that can run with variable input speeds. The design of the gear train enables the transmission of high torques by dividing the load across multiple planetary gears. In addition, the planetary gear train has multiple teeth which mesh simultaneously in operation. This design also allows for higher efficiency and transmittable torque. Here are some other advantages of planetary motor gear trains. All these advantages make planetary motor gear trains one of the most popular types of planetary motors.
The compact footprint of planetary gears allows for excellent heat dissipation. High speeds and sustained performances will require lubrication. This lubricant can also reduce noise and vibration. But if these characteristics are not desirable for your application, you can choose a different gear type. Alternatively, if you want to maintain high performance, a planetary motor gear train will be the best choice. So, what are the advantages of planetary motor gears?

planetary gear train with fixed carrier train ratio

The planetary gear train is a common type of transmission in various machines. Its main advantages are high efficiency, compactness, large transmission ratio, and power-to-weight ratio. This type of gear train is a combination of spur gears, single-helical gears, and herringbone gears. Herringbone planetary gears have lower axial force and high load carrying capacity. Herringbone planetary gears are commonly used in heavy machinery and transmissions of large vehicles.
To use a planetary gear train with a fixed carrier train ratio, the first and second planets must be in a carrier position. The first planet is rotated so that its teeth mesh with the sun’s. The second planet, however, cannot rotate. It must be in a carrier position so that it can mesh with the sun. This requires a high degree of precision, so the planetary gear train is usually made of multiple sets. A little analysis will simplify this design.
The planetary gear train is made up of three components. The outer ring gear is supported by a ring gear. Each gear is positioned at a specific angle relative to one another. This allows the gears to rotate at a fixed rate while transferring the motion. This design is also popular in bicycles and other small vehicles. If the planetary gear train has several stages, multiple ring gears may be shared. A stationary ring gear is also used in pencil sharpener mechanisms. Planet gears are extended into cylindrical cutters. The ring gear is stationary and the planet gears rotate around a sun axis. In the case of this design, the outer ring gear will have a -3/2 planet gear ratio.
Motor

planetary gear train with zero helix angle

The torque distribution in a planetary gear is skewed, and this will drastically reduce the load carrying capacity of a needle bearing, and therefore the life of the bearing. To better understand how this can affect a gear train, we will examine two studies conducted on the load distribution of a planetary gear with a zero helix angle. The first study was done with a highly specialized program from the bearing manufacturer INA/FAG. The red line represents the load distribution along a needle roller in a zero helix gear, while the green line corresponds to the same distribution of loads in a 15 degree helix angle gear.
Another method for determining a gear’s helix angle is to consider the ratio of the sun and planet gears. While the sun gear is normally on the input side, the planet gears are on the output side. The sun gear is stationary. The two gears are in engagement with a ring gear that rotates 45 degrees clockwise. Both gears are attached to pins that support the planet gears. In the figure below, you can see the tangential and axial gear mesh forces on a planetary gear train.
Another method used for calculating power loss in a planetary gear train is the use of an auto transmission. This type of gear provides balanced performance in both power efficiency and load capacity. Despite the complexities, this method provides a more accurate analysis of how the helix angle affects power loss in a planetary gear train. If you’re interested in reducing the power loss of a planetary gear train, read on!

planetary gear train with spur gears

A planetary gearset is a type of mechanical drive system that uses spur gears that move in opposite directions within a plane. Spur gears are one of the more basic types of gears, as they don’t require any specialty cuts or angles to work. Instead, spur gears use a complex tooth shape to determine where the teeth will make contact. This in turn, will determine the amount of power, torque, and speed they can produce.
A two-stage planetary gear train with spur gears is also possible to run at variable input speeds. For such a setup, a mathematical model of the gear train is developed. Simulation of the dynamic behaviour highlights the non-stationary effects, and the results are in good agreement with the experimental data. As the ratio of spur gears to spur gears is not constant, it is called a dedendum.
A planetary gear train with spur gears is a type of epicyclic gear train. In this case, spur gears run between gears that contain both internal and external teeth. The circumferential motion of the spur gears is analogous to the rotation of planets in the solar system. There are four main components of a planetary gear train. The planet gear is positioned inside the sun gear and rotates to transfer motion to the sun gear. The planet gears are mounted on a joint carrier that is connected to the output shaft.
Motor

planetary gear train with helical gears

A planetary gear train with helical teeth is an extremely powerful transmission system that can provide high levels of power density. Helical gears are used to increase efficiency by providing a more efficient alternative to conventional worm gears. This type of transmission has the potential to improve the overall performance of a system, and its benefits extend far beyond the power density. But what makes this transmission system so appealing? What are the key factors to consider when designing this type of transmission system?
The most basic planetary train consists of the sun gear, planet gear, and ring gear elements. The number of planets varies, but the basic structure of planetary gears is similar. A simple planetary geartrain has the sun gear driving a carrier assembly. The number of planets can be as low as two or as high as six. A planetary gear train has a low mass inertia and is compact and reliable.
The mesh phase properties of a planetary gear train are particularly important in designing the profiles. Various parameters such as mesh phase difference and tooth profile modifications must be studied in depth in order to fully understand the dynamic characteristics of a PGT. These factors, together with others, determine the helical gears’ performance. It is therefore essential to understand the mesh phase of a planetary gear train to design it effectively.

China OEM High Quality Brushed Gdm06 CZPT Electric Micro Small DC Gear Motor with Gearbox 10W/15W/20W/25W/30W/40W/60W/90W/120W/180W/200W   with high qualityChina OEM High Quality Brushed Gdm06 CZPT Electric Micro Small DC Gear Motor with Gearbox 10W/15W/20W/25W/30W/40W/60W/90W/120W/180W/200W   with high quality
editor by CX 2023-11-22

China Custom Factory Direct Sell Block Slide Linear Guide CNC Actuated Linear Guideway Rail vacuum pump ac system

Product Description

Product Description

Type

Linear Xihu (West Lake) Dis.s

Material

Bearing steel GCR15

Brand

SER

Rigidity

HRC 58-62

Rated load 1

503-4524

Rated load 2

815-7909

Mounting hole

M4-M14

Xihu (West Lake) Dis. Length

100-4000mm

Quality certificate

ISO9001-2008

Width or Diameter

15-45mm

Function

Anti-friction, Dustproof, Antirust

Performance

low friction, low noise, high speed and high precision

Application

precision part, cnc machining parts, auto parts, industrial parts, etc

Detailed Photos

 

 

Product Parameters

Packaging & Shipping

 

Company Profile

ZheJiang Sair Mechanical Xihu (West Lake) Dis. Co., Ltd

ZheJiang Sair Mechanical Xihu (West Lake) Dis. Co., Ltd is 1 of the biggest linear guide and ball screw manufacture in  China,with strong technical strength, advanced  production  equipments, high-quality  staff  team  and  perfect  after-sales services, our company is the precision machinery  manufacturer with research and development, manufacturing, sales, service all in one.

 

After Sales Service

Customer Service

The products are mature with high quality. They are not only sold well all over the country, but also exported to Europe, Americas, Southeast Asia, Africa and more than 70 countries. They have excellent marketing performance, highly appreciated and trusted by the vast number of customers.

If you have any needs, Please contact with me directly!

FAQ

 

1. Q: How about the quality of your product?

A: 100% inspection during production. Our products are certified to ISO9001-2008 international quality standards.

2. Q: What’s the delivery time?

A: For custom order, within 2000 meters, Production time is 15days after confirmed every details.

3. Q: What’s your packing?

A: Our Normal packing is bulking in PE bag, and then into plywood Cartons. We also can pack products according to your requirement.

4. Q: What about the warranty?

A: We are very confident in our products,and we pack them very well to make sure the goods in well protection.

5. Q: Could you send me your catalogue and price list?

A: As we have more than hundreds of products,it is really too hard to send all of catalogue and price list for you. Please inform us the style you interested, we can offer the pricelist for your reference.

6. Q:There are a lot of companies which export bearings, why do you choose us?

A: As we are a genuine linear guide supplier since 2011.and we are really factory, you need not pay the profit for middlemen. so we can offer you the lowest and competitive price .

Application: CNC Machine
Material: Steel
Structure: Rail & Slider
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

motor base

Are there any energy efficiency benefits associated with specific types of motor slide rails?

Yes, specific types of motor slide rails can offer energy efficiency benefits. Here’s a detailed explanation:

The energy efficiency of motor slide rails is primarily influenced by their design, materials, and features. While the slide rails themselves do not directly impact the energy efficiency of the motor, certain characteristics can contribute to overall system efficiency. Here are some factors to consider:

1. Friction and Smooth Movement:

Motor slide rails that are designed to reduce friction and enable smooth movement can contribute to energy efficiency. By minimizing frictional forces, the motor requires less energy to overcome resistance and move along the slide rails. This can result in improved overall efficiency and reduced energy consumption.

2. Lubrication and Maintenance:

Proper lubrication of motor slide rails is crucial for minimizing friction and optimizing energy efficiency. Well-lubricated slide rails can reduce wear and frictional losses, allowing the motor to operate more efficiently. Regular maintenance, including lubricant checks and replacements, ensures that the slide rails maintain their energy-efficient performance over time.

3. Design and Materials:

The design and materials used in motor slide rails can also impact energy efficiency. Certain materials, such as those with low coefficients of friction or high strength-to-weight ratios, can reduce energy losses and improve overall efficiency. Additionally, the design of the slide rails, including their shape, profile, and load-bearing capacities, can optimize the motor’s performance and minimize energy waste.

4. Damping and Vibration Reduction:

Motor slide rails that incorporate damping mechanisms or vibration-reducing features can enhance energy efficiency. Excessive vibrations can lead to energy losses and increased wear on the motor. Slide rails designed to absorb or dampen vibrations can help maintain stable and efficient motor operation, resulting in energy savings.

5. Environmental Considerations:

Specific types of motor slide rails may also offer energy efficiency benefits in certain environmental conditions. For example, slide rails that are resistant to corrosion, dust, or moisture can help maintain their performance and efficiency over time. By minimizing the impact of environmental factors, the motor can operate optimally, reducing energy waste and improving efficiency.

It’s important to note that while specific types of motor slide rails can offer energy efficiency benefits, the overall energy efficiency of a motor system is influenced by multiple factors, including motor design, control systems, and operational practices. The selection of energy-efficient slide rails should be considered within the broader context of the entire motor system to maximize energy savings.

In summary, certain types of motor slide rails can contribute to energy efficiency by reducing friction, enabling smooth movement, utilizing appropriate materials, incorporating damping mechanisms, and considering environmental factors. By selecting and maintaining energy-efficient slide rails, it is possible to optimize the performance and energy efficiency of motor systems, leading to potential energy savings over the long term.

motor base

What safety features should users consider when working with motor slide rails?

When working with motor slide rails, users should consider several safety features to ensure a safe working environment. Here’s a detailed explanation:

1. Locking Mechanisms:

Motor slide rails should be equipped with reliable locking mechanisms to secure the motor in place during maintenance or when the motor is not in use. Locking mechanisms, such as locking pins or levers, prevent unintentional movement of the motor along the rails, reducing the risk of accidents or injuries. Users should ensure that the locking mechanisms are engaged before performing any maintenance tasks or when the motor needs to remain stationary.

2. Load Capacity and Overload Protection:

When selecting motor slide rails, users should consider the load capacity of the rails to ensure they can safely support the weight of the motor and any associated components. Exceeding the load capacity can lead to rail failure, causing accidents or damage. Additionally, it is advisable to have overload protection mechanisms in place to prevent excessive loads from being applied to the slide rails. This can include measures such as load sensors, limit switches, or overload clutches that automatically disengage the motor in case of excessive load, preventing damage or injury.

3. Anti-Tip Mechanisms:

Anti-tip mechanisms are important safety features that prevent the motor from tipping over when it is moved along the slide rails. These mechanisms typically consist of stabilizing legs or brackets that provide stability and prevent the motor from becoming unbalanced during operation or maintenance. Users should ensure that the anti-tip mechanisms are properly engaged and functional before moving the motor along the slide rails.

4. Electrical Safety:

When working with motor slide rails, users should observe electrical safety precautions to prevent electrical shocks or hazards. This includes disconnecting the motor from the power supply before performing any maintenance tasks, using appropriate personal protective equipment (PPE) such as insulated gloves or tools when working with electrical components, and following proper lockout/tagout procedures to ensure the motor is de-energized and cannot be accidentally started during maintenance activities.

5. Clear Access and Workspace:

Users should ensure that there is a clear and unobstructed access pathway and workspace around the motor slide rails. This helps prevent trips, slips, or falls during maintenance activities. It is important to keep the area around the motor slide rails free from debris, tools, or other objects that could impede safe movement or cause accidents.

6. Proper Training and Familiarity:

Users should receive proper training on the safe operation and maintenance procedures specific to the motor slide rail system they are working with. They should be familiar with the manufacturer’s instructions, safety guidelines, and any specific precautions related to the installation, adjustment, or maintenance of the slide rails. Adequate knowledge and understanding of the equipment and its safety features are crucial for safe operation and maintenance practices.

7. Regular Inspection and Maintenance:

Regular inspection and maintenance of the motor slide rails are essential for identifying any safety concerns or potential issues. Users should inspect the slide rails for signs of wear, damage, or deterioration and take appropriate actions, such as replacing worn-out components or addressing any safety hazards. Proper lubrication, cleaning, and maintenance practices should be followed as per the manufacturer’s recommendations to ensure the safe and reliable operation of the motor slide rails.

Overall, users should consider safety features such as locking mechanisms, load capacity and overload protection, anti-tip mechanisms, electrical safety precautions, clear access and workspace, proper training and familiarity with the equipment, and regular inspection and maintenance when working with motor slide rails. By adhering to these safety features, users can create a safer working environment and minimize the risk of accidents or injuries.

In summary, users should consider various safety features, including locking mechanisms, load capacity, anti-tip mechanisms, electrical safety, clear access and workspace, proper training, and regular inspection and maintenance, when working with motor slide rails.

motor base

What is the purpose of motor slide rails in the context of electric motor installations?

In the context of electric motor installations, motor slide rails serve several important purposes. Here’s a detailed explanation:

1. Easy Motor Installation and Removal:

Motor slide rails provide a convenient and efficient method for installing and removing electric motors. These rails are typically mounted on a motor base or mounting platform and allow the motor to slide in and out smoothly. By using motor slide rails, the motor can be easily positioned and secured in place during installation, and later removed for maintenance or replacement without the need for complex disassembly.

2. Precise Motor Alignment:

Motor slide rails facilitate precise motor alignment with the driven equipment. They allow for horizontal adjustment, ensuring that the motor shaft is parallel and co-linear with the driven shaft. This alignment is crucial for optimal performance, minimizing energy losses, and reducing wear and tear on both the motor and the driven equipment. Motor slide rails offer the flexibility to make fine adjustments to achieve the desired alignment, resulting in improved efficiency and reliability.

3. Vibration Damping and Noise Reduction:

Motor slide rails help dampen vibrations generated by electric motors during operation. Vibrations can arise from factors such as motor imbalances, misalignment, or external forces. The use of slide rails with vibration-dampening properties or by incorporating additional vibration isolation mechanisms can reduce the transmission of vibrations to the surrounding structure. This dampening effect improves overall system performance, reduces noise levels, and protects other components from excessive vibrations.

4. Maintenance and Service Accessibility:

Motor slide rails provide easy access to the motor for maintenance and service tasks. By sliding the motor along the rails, technicians can quickly reach various motor components, such as bearings, cooling fans, or electrical connections, for inspection, lubrication, or repairs. This accessibility simplifies routine maintenance procedures, reduces downtime, and improves the overall serviceability of the motor.

5. Flexibility for Motor Positioning:

Motor slide rails offer flexibility in motor positioning within the installation. They allow for adjustments in the motor’s position, both horizontally and vertically, to accommodate specific space constraints or align with existing equipment. This flexibility is particularly beneficial when retrofitting motors into existing systems or when dealing with limited space. Motor slide rails enable customization of the motor’s position to optimize performance and ensure compatibility with the application requirements.

6. Load Distribution and Stability:

Motor slide rails contribute to load distribution and stability in electric motor installations. The rails help distribute the weight of the motor evenly across the mounting platform, preventing excessive stress on specific points. This load distribution improves the overall stability of the motor and reduces the risk of structural damage or misalignment caused by uneven weight distribution.

In summary, motor slide rails serve the purpose of facilitating easy motor installation and removal, enabling precise motor alignment, dampening vibrations, providing accessibility for maintenance and service tasks, offering flexibility in motor positioning, and contributing to load distribution and stability. By utilizing motor slide rails effectively, electric motor installations can achieve improved performance, reduced downtime, and enhanced overall reliability.

China Custom Factory Direct Sell Block Slide Linear Guide CNC Actuated Linear Guideway Rail   vacuum pump ac system	China Custom Factory Direct Sell Block Slide Linear Guide CNC Actuated Linear Guideway Rail   vacuum pump ac system
editor by CX 2023-11-18

China manufacturer Chinese Factory Mgn Linear Guide Rail vacuum pump brakes

Product Description

Domestic miniature linear guideways and linear blocks

Company Profile

HangZhou Wangong Precision Machinery Co., Ltd.

About US: Professional  producing Ball screw, Linear guide, linear shaft, Linear roller guide and linear motion bearings
HangZhou Wangong Precision Machinery Co., Ltd was founded in 2008 and is located in HangZhou City, ZHangZhoug Pro. China. We ahve built a R&D and profuction base of more than 52000m, Our expertise lies in manufacturing precision transmission components, As a distinguished high-tech enterprise, we seamlessly integrate research and development, production, sales, and service. We have successfully incorporated advanced equipment and cutting-edge technologies from renowned countries like Germany, Japan and ZheJiang .

Product Description

1,Intruduction

Our domestic square linear rail is very easy to interchange each other, or with CHINAMFG parts. Because our size are the same as CHINAMFG brand. Therefore You will save the cost, but can be up to your requirement’s quality.
Linear guide is consisted of rail, block, rolling elements, retainer, recirculator, seal etc. By using the rolling elements, such as balls or rollers between the rail and block, the linear guide can achieve high precision linear motion. Linear guide block is divied to flange type and slim type without flange.or Seal type block, Standard type block, Double bearing type block, Short type block.  Also,
linear block is divided to high load capacity with standard block lenth and ultra high load capacity with longer block length.

2, All kinds of heavy load linear guides and blocks

 

    MGN-C/MGN-H            MGW-C/MGW-H             MGW15C/MGW15H

 

3,Products specifications
 

Brand name ERSK, (they are able to interchange into CHINAMFG linear guide and blocks)
Product name Linear guide and block
Model no. MGN-C/MGN-H/MGW-C/MGW-H
Material 20CrM and GCr15
Service after-sale service and technical assistance as per customer’s
requirement and needs. Customers are always given quickly
support.
Length Max:2000mm, other length as your requirement
Delivery time Base on customer required quantity,by negotiated
Products packing Plastic bag+box case or wooden case, or according to
customer’s requestment
Sample Sample order could be available
Payment terms T/t or L/C are available for large orders, Paypal and West
Union for small orders
Shipping method DHL,UPS,TNT,FEDEX,EMS,Airfreight and by sea, By
negotiated
Quality ISO9001-2008

4, Data sheet

Related products

ERSK manufacturer main products

Our Advantages

As a distinguished high-tech enterprise, we seamlessly integrate research and development, production, sales, and service. We have successfully incorporated advanced equipment and cutting-edge technologies from renowned countries like Germany, Japan, and ZheJiang . Our commitment to innovation has led to the acquisition of multiple product design patents, and we proudly adhere to ISO9001 certification standards.

Our service

Our Team:
Professional technicians, high-quality production workers, 24-hour salespersons
OUR PHILOSOPHY:
Integrity is at the core of our values, and providing excellent 
service is our top priority. We begin by understanding your 
needs and strive to ensure your utmost satisfaction, forging a mutually beneficial relationship.
OUR MISSION:
Through technology and innovation, we strive to enhance 
product quality and deliver exceptional products and services 
to you.
OUR VISION:
We are firmly dedicated to CHINAMFG the pinnacle of highquality standards and venturing into the realm of world-class 
advanced manufacturing industries.
We are excited about the opportunity to work with you and 
exceed your expectations.

 

 

 

Application: Warehouse Crane, Shipboard Crane, Goods Yard Crane, Building Crane, Workshop Crane, Machines
Material: S55c
Structure: Linear Motion Transmission
Samples:
US$ 10/Meter
1 Meter(Min.Order)

|

Order Sample

mini linear rail
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

motor base

What troubleshooting steps can be taken for common issues related to motor slide rail misalignment?

When dealing with motor slide rail misalignment, several troubleshooting steps can be taken to identify and resolve common issues. Here’s a detailed explanation:

Misalignment of motor slide rails can lead to various problems, including uneven movement, increased friction, excessive wear, and potential damage to the motor and slide rail components. Troubleshooting the issue involves a systematic approach to identify the cause of misalignment and take appropriate corrective actions. Here are some troubleshooting steps to consider:

1. Visual Inspection:

Begin by visually inspecting the motor slide rails and associated components. Look for any obvious signs of misalignment, such as visible gaps, skewed positioning, or uneven wear patterns. Check for loose or damaged mounting brackets, fasteners, or attachment points. Inspect the slide rails for any signs of damage, deformation, or excessive wear that may contribute to misalignment.

2. Measurement and Alignment:

Use precision measuring tools, such as calipers or laser alignment devices, to assess the alignment of the motor slide rails. Measure the distance between the slide rails at multiple points along their length to check for consistent spacing. Compare the measurements to the manufacturer’s specifications or alignment guidelines to identify any deviations. Adjust the positioning of the slide rails as necessary to achieve proper alignment.

3. Check Mounting Brackets and Fasteners:

Ensure that the mounting brackets and fasteners securing the motor slide rails are properly tightened. Loose brackets or fasteners can contribute to misalignment and instability. Carefully inspect the brackets and fasteners for any damage or wear that may affect their ability to maintain alignment. Tighten or replace any loose or damaged components as needed.

4. Lubrication and Friction:

Check the lubrication of the motor slide rails. Insufficient or improper lubrication can cause increased friction, leading to misalignment or uneven movement. Apply the appropriate lubricant according to the manufacturer’s recommendations. Ensure that the lubricant is evenly distributed along the slide rails and that any excess lubricant is removed to prevent accumulation of debris or contaminants.

5. Environmental Factors:

Consider environmental factors that may contribute to motor slide rail misalignment. Temperature extremes, humidity, dust, or vibration can affect the stability and alignment of the slide rails. If the environment poses challenges, consider implementing measures such as protective enclosures, seals, or vibration dampening to minimize the impact on alignment.

6. Professional Assistance:

If troubleshooting steps do not resolve the misalignment issue or if the cause is not apparent, it may be necessary to seek professional assistance. Contact the manufacturer or a qualified technician with expertise in motor slide rails for further diagnosis and guidance. They can provide specialized knowledge and tools to address complex misalignment issues.

In summary, troubleshooting misalignment issues with motor slide rails involves visual inspection, measurement, alignment adjustments, checking mounting brackets and fasteners, lubrication, considering environmental factors, and seeking professional assistance when needed. By systematically addressing these troubleshooting steps, it is possible to identify and resolve common issues related to motor slide rail misalignment, ensuring optimal performance and longevity of the motor system.

motor base

Can motor slide rails be used in outdoor or challenging environmental conditions?

Yes, motor slide rails can be used in outdoor or challenging environmental conditions. Here’s a detailed explanation:

Motor slide rails are designed to withstand a wide range of operating conditions, including outdoor or challenging environments. The specific suitability of motor slide rails for outdoor use depends on the design, materials, and protective measures incorporated into the rail system. Here are some factors to consider:

1. Material Selection:

The materials used in motor slide rails play a crucial role in determining their suitability for outdoor or challenging environments. High-quality materials, such as stainless steel, aluminum alloys, or corrosion-resistant coatings, are commonly used to enhance durability and resistance to environmental factors like moisture, UV exposure, extreme temperatures, chemicals, or abrasion. These materials help protect the slide rails from corrosion, rust, or other forms of degradation that can occur in outdoor settings.

2. Sealing and Enclosure:

In outdoor or challenging environments, motor slide rails may require additional sealing or enclosure measures to protect against dust, dirt, water ingress, or other contaminants. Weatherproof seals, gaskets, or protective covers can be employed to create a barrier between the rail system and the external environment. These measures help maintain the integrity of the motor slide rails and prevent the entry of harmful substances that could compromise their performance or longevity.

3. IP Ratings:

Motor slide rails can be designed to meet specific Ingress Protection (IP) ratings, which indicate the level of protection against solids and liquids. IP ratings are standardized codes that provide information about the degree of protection offered by the enclosure or housing of the motor slide rails. Higher IP ratings, such as IP65 or IP67, indicate a higher level of protection against dust, water, and other environmental factors. Choosing motor slide rails with suitable IP ratings ensures their ability to withstand outdoor or challenging conditions.

4. Environmental Testing and Certification:

Motor slide rails can undergo rigorous environmental testing to validate their performance and durability in challenging conditions. These tests may include exposure to extreme temperatures, moisture, salt spray, vibration, or mechanical stress. Certifications such as NEMA (National Electrical Manufacturers Association) or IEC (International Electrotechnical Commission) can provide assurance of compliance with industry standards and specifications for outdoor or demanding environmental applications.

5. Lubrication and Maintenance:

Proper lubrication and maintenance are essential for the reliable operation of motor slide rails in outdoor or challenging environments. Lubricants specifically formulated for outdoor use or resistant to extreme conditions can be applied to ensure smooth sliding and protection against wear and corrosion. Regular inspection, cleaning, and lubrication of the slide rails help maintain their performance and extend their service life in demanding environments.

6. Application Considerations:

When using motor slide rails in outdoor or challenging environments, it is important to consider the specific application requirements. Factors such as temperature extremes, exposure to chemicals or solvents, high humidity, or mechanical stress should be assessed to ensure the suitability of the slide rail system. Additionally, factors like load capacity, shock resistance, and compatibility with other equipment in the application should be considered to ensure optimal performance and safety.

Overall, motor slide rails can be designed and engineered to be used in outdoor or challenging environmental conditions. By selecting appropriate materials, incorporating sealing measures, considering IP ratings, conducting environmental testing, and implementing proper lubrication and maintenance practices, motor slide rails can provide reliable and durable performance in demanding settings. However, it is essential to carefully evaluate the specific requirements of the application and choose motor slide rails that are specifically designed and rated for outdoor or challenging environments.

In summary, motor slide rails can be used in outdoor or challenging environmental conditions through the use of suitable materials, sealing measures, IP ratings, environmental testing, and proper maintenance practices.

motor base

How do motor slide rails contribute to the flexibility of motor positioning and alignment?

In the context of electric motor installations, motor slide rails play a significant role in providing flexibility for motor positioning and alignment. Here’s a detailed explanation:

1. Horizontal Adjustability:

Motor slide rails allow for horizontal adjustability, enabling precise motor positioning and alignment. By sliding the motor along the rails, users can make fine adjustments to achieve the desired alignment with the driven equipment. This horizontal adjustability ensures that the motor shaft is parallel and co-linear with the driven shaft, optimizing power transmission efficiency and minimizing wear and tear on both the motor and the driven components.

2. Vertical Adjustability:

In addition to horizontal adjustability, some motor slide rail systems also offer vertical adjustability. This feature allows users to adjust the motor’s height or elevation within the installation. Vertical adjustability is particularly useful when aligning the motor with existing equipment or accommodating specific space constraints. It provides flexibility to position the motor at the optimal height for efficient power transfer and compatibility with the driven system.

3. Customizable Mounting Configurations:

Motor slide rails support customizable mounting configurations, further enhancing flexibility in motor positioning and alignment. These rails often feature multiple mounting holes or slots along their length, allowing users to choose different attachment points for the motor. This flexibility enables users to adapt the motor slide rail system to match the specific dimensions and requirements of the installation. Customizable mounting configurations are particularly advantageous when retrofitting motors into existing systems or when dealing with non-standard motor or equipment sizes.

4. Accommodation of Space Limitations:

Motor slide rails provide a solution for installations with space limitations. In restricted spaces, where direct access to the motor or driven equipment may be limited, motor slide rails allow users to position the motor in a more accessible location. By sliding the motor along the rails, technicians can gain easy access to various motor components for maintenance, inspection, or repairs. This accommodation of space limitations ensures that critical maintenance tasks can be performed efficiently, reducing downtime and improving serviceability.

5. Alignment Fine-Tuning:

Motor slide rails enable precise alignment fine-tuning even after the initial installation. If adjustments are needed due to changes in operating conditions or system requirements, the motor can be easily moved along the rails to achieve the desired alignment. This fine-tuning capability ensures that the motor remains optimally aligned over time, maintaining efficient power transmission and prolonging the life of the motor and other system components.

6. Compatibility with Different Motor Sizes:

Motor slide rails are designed to accommodate different motor sizes and mounting configurations. They are often modular in nature, allowing for easy adjustment and customization to match the specific dimensions of the motor. Whether installing small motors or larger industrial-grade motors, motor slide rails provide the flexibility to position and align motors of varying sizes, ensuring compatibility with the chosen motor and the requirements of the application.

In summary, motor slide rails contribute to the flexibility of motor positioning and alignment through horizontal and vertical adjustability, customizable mounting configurations, accommodation of space limitations, alignment fine-tuning capabilities, and compatibility with different motor sizes. These features empower users to achieve precise motor alignment, optimize power transmission efficiency, and adapt the motor installation to specific space constraints or equipment configurations.

China manufacturer Chinese Factory Mgn Linear Guide Rail   vacuum pump brakesChina manufacturer Chinese Factory Mgn Linear Guide Rail   vacuum pump brakes
editor by CX 2023-11-17

China wholesaler CHINAMFG Steel Miniature Linear Slide Rail Guide for Micro Robot Mgr Series vacuum pump oil

Product Description

KGG Miniature Precision Linear Xihu (West Lake) Dis. Rail–MGR Series

 

Shared Slide Design

Δ Stainless steel material with corrosion resistance

Steel Ball Anti-drop Design

Δ Steel balls will not fall off, easy to install and replace

Double Lip Design

Δ Oil scraping and dustproof performance is upgraded again

Steel Ball

Δ Steel ball from Japanese technology, high matching, good wear resistance
(ISO3290 G10) Grade

Application:

1.Medical industry
2.Lithium battery industry
3.Solar photovoltaic industry
4. Semiconductor Industry
5. General industry machinery
6. Machine tool
7. Parking system
8. High-speed rail and aviation transportation equipment
9. 3C industry etc

 

Specification List

FACTORY DETAILED PROCESSING PHOTOS

HIGH QUALITY CONTROL SYSTEM


 FAQ

1. Why choose CHINAMFG China?

Over the past 14 years, CHINAMFG has always insisted that “products and services” start from Japanese industry standards,taking ZheJiang standards as the bottom line, actively invest in the development of new transmission components and self-experiment and test. With the service tenet of “exceeding customer expectations”, establish a “trusted” partnership.

2. What is your main products ?

We are a leading manufacturer and distributor of linear motion components in China. Especially miniature size of Ball Screws and Linear Actuators and linear motion guideways. Our brand “KGG” stands for ” Know-how,” ” Great Quality,” and ” Good value” and our factory is located in the most advanced city in China: ZheJiang with the best equipment and sophisticated technology, completely strict quality control system. Our aim is to supply world leader class linear motion components but with most reasonable price in the world.

3. How to Custom-made (OEM/ODM)?

If you have a product drawing or a sample, please send to us, and we can custom-made the as your required. We will also provide our professional advices of the products to make the design to be more realized & maximize the performance.

4. When can I get the quotation?

We usually quote within 24 hours after we get your inquiry. If you are very urgent to get the price,please call us or tell us in your email so that we will regard your inquiry priority.

5. How can I get a sample to check the quality?

After confirmation of our quoted price, you can place the sample order. The sample will be started after you CHINAMFG back our detailed technical file.

6. What’s your payment terms?

Our payment terms is 30% deposit,balance 70% before shipment.

Application: Precision Automation Equipment
Material: Steel
Structure: Linear Motion Transmission
Installation: Automatic Machinery
Driven Type: Ball Screw Motor
Carrying Capacity: Weight Level
Customization:
Available

|

motor base

What are the latest advancements or innovations in motor slide rail technology?

The motor slide rail technology has seen several advancements and innovations in recent years. Here’s a detailed explanation:

Motor slide rail technology continues to evolve, driven by the need for improved performance, efficiency, and versatility in various applications. The latest advancements and innovations in motor slide rail technology include:

1. High-precision and Anti-backlash Designs:

Manufacturers have been focusing on developing motor slide rails with high-precision and anti-backlash features. These advancements aim to minimize backlash, which is the play or movement between the slide rail and the motor. High-precision designs ensure accurate positioning and reduce errors, making them suitable for applications that require precise and repeatable movement.

2. Integrated Positioning Systems:

Some motor slide rails now incorporate integrated positioning systems, such as encoders or sensors, to provide real-time feedback on the position and movement of the motor. These integrated systems enhance the accuracy and control of motor positioning, enabling precise motion control applications. They also allow for advanced features like closed-loop control and position verification.

3. Compact and Space-saving Designs:

To meet the demand for space-saving solutions, motor slide rails have been designed with compact profiles and reduced dimensions. These compact designs allow for efficient utilization of space in applications where size constraints are a concern. Compact motor slide rails are particularly beneficial in industries like robotics, automation, and electronics where space optimization is critical.

4. Lightweight and High-strength Materials:

The use of lightweight and high-strength materials in motor slide rail construction has become more prevalent. Advanced materials, such as aluminum alloys and carbon fiber composites, offer improved strength-to-weight ratios, reducing the overall weight of the slide rails without compromising structural integrity. This not only enhances the performance of the motor system but also reduces energy consumption and allows for easier installation and handling.

5. Modular and Customizable Designs:

Modular motor slide rail systems have gained popularity due to their flexibility and adaptability to different applications. These systems feature interchangeable components and modular designs that allow for easy customization and configuration. Users can select and combine various modules, such as different lengths, mounting options, or motor compatibility, to create a motor slide rail system tailored to their specific needs.

6. Improved Durability and Maintenance:

Advancements in motor slide rail technology have also focused on enhancing durability and reducing maintenance requirements. Innovative sealing mechanisms, protective coatings, and improved lubrication systems help prevent contamination, corrosion, and wear. This results in longer service life, reduced downtime, and lower maintenance costs for motor slide rail systems.

In summary, the latest advancements and innovations in motor slide rail technology include high-precision designs, integrated positioning systems, compact and space-saving designs, lightweight and high-strength materials, modular and customizable options, as well as improved durability and maintenance features. These innovations aim to improve performance, accuracy, efficiency, and versatility in motor slide rail applications, catering to the evolving needs of various industries.

motor base

What considerations should be taken into account when selecting motor slide rails for a specific application?

When selecting motor slide rails for a specific application, several considerations should be taken into account. Here’s a detailed explanation:

1. Load Capacity:

One of the primary considerations is the load capacity of the motor slide rails. The slide rails should be able to support the weight and forces exerted by the motor and any additional components or loads attached to it. It’s important to determine the maximum load that the slide rails will be subjected to in the specific application and choose rails with an appropriate load rating to ensure safe and reliable operation.

2. Travel Distance and Stroke Length:

The required travel distance or stroke length of the motor slide rails is another important factor to consider. The slide rails should be able to accommodate the desired range of movement for the motor, allowing for the necessary adjustments and positioning within the application. It’s crucial to select slide rails with a stroke length that meets the specific requirements of the application, taking into account any space limitations or operational constraints.

3. Mounting Compatibility:

Consider the compatibility of the motor slide rails with the existing mounting configuration in the application. Check whether the slide rails can be easily integrated with the motor mounts, brackets, or plates used in the system. Ensure that the mounting options and hole patterns of the slide rails align with the motor’s mounting requirements to facilitate a secure and proper attachment.

4. Dimensional Requirements:

Evaluate the dimensional requirements of the motor slide rails in relation to the available space and constraints in the application. Consider the overall length, width, and height of the slide rails to ensure they can fit within the designated installation area. It’s important to account for any clearance requirements, surrounding components, or spatial limitations that may impact the selection of slide rail dimensions.

5. Environmental Factors:

Take into account the environmental conditions in which the motor slide rails will operate. Consider factors such as temperature, humidity, exposure to dust or contaminants, and potential vibrations or shocks. Ensure that the selected slide rails are designed to withstand and perform reliably in the specific environmental conditions of the application. Look for features such as corrosion resistance, sealing or protective coatings, and robust construction that can enhance the durability and longevity of the slide rails.

6. Precision and Accuracy:

If precise motor positioning is critical for the application, consider the level of precision and accuracy required from the slide rails. Some applications may demand high repeatability and tight tolerances in motor adjustments. In such cases, look for slide rails that offer fine adjustment mechanisms, graduated scales, or other features that enable precise positioning and alignment of the motor.

7. Application-Specific Requirements:

Consider any specific requirements or challenges posed by the application. This could include factors such as speed requirements, duty cycles, special safety considerations, or unique industry-specific standards. Ensure that the selected motor slide rails meet these specific requirements and comply with relevant standards or regulations.

By considering these factors, you can make an informed decision when selecting motor slide rails for a specific application. It’s important to balance the technical requirements, environmental conditions, and application-specific factors to choose slide rails that provide optimal performance, reliability, and longevity within the intended application.

In summary, when selecting motor slide rails for a specific application, considerations should include load capacity, travel distance, mounting compatibility, dimensional requirements, environmental factors, precision and accuracy needs, and any application-specific requirements or challenges.

motor base

Can motor slide rails be used for both horizontal and vertical motor installations?

Yes, motor slide rails can be used for both horizontal and vertical motor installations. Here’s a detailed explanation:

Motor slide rails are versatile components that provide flexibility in motor positioning and alignment. They are designed to accommodate various installation orientations, including both horizontal and vertical configurations. The adaptability of motor slide rails allows them to be used in different orientations to suit the specific requirements of the motor and application.

Horizontal Motor Installations:

In horizontal motor installations, the motor slide rails are typically mounted on a base or mounting platform. The motor is then positioned on the rails and secured in place. Horizontal motor installations are commonly used in applications where the motor shaft needs to be parallel and co-linear with the driven equipment. The motor slide rails facilitate precise alignment, allowing for horizontal adjustability to achieve the desired alignment. Horizontal motor installations are prevalent in many industrial and commercial applications.

Vertical Motor Installations:

In vertical motor installations, the motor slide rails are used to support and position the motor vertically. The rails are mounted vertically on a base or mounting structure, and the motor is slid into position along the rails. Vertical motor installations are typically employed in applications where space is limited, and it is more practical or efficient to position the motor vertically. Vertical motor installations are common in situations such as pump systems, hoists, or machinery where a compact footprint is desired.

Motor slide rails designed for vertical installations may have additional features to ensure the motor’s stability and secure placement. These features can include locking mechanisms, anti-vibration pads, or other components to prevent the motor from shifting or rotating while in operation.

Whether used for horizontal or vertical motor installations, motor slide rails offer several benefits. They allow for easy motor installation and removal, precise alignment, vibration damping, maintenance accessibility, and flexibility in motor positioning. Their versatility in accommodating different installation orientations makes them suitable for a wide range of applications, providing the necessary adaptability to meet specific motor and system requirements.

In summary, motor slide rails can be used for both horizontal and vertical motor installations. They are designed to provide flexibility and ease of use in positioning and aligning motors, regardless of the installation orientation. The choice between horizontal and vertical installation depends on the specific application, space constraints, and the desired alignment and performance objectives.

China wholesaler CHINAMFG Steel Miniature Linear Slide Rail Guide for Micro Robot Mgr Series   vacuum pump oil	China wholesaler CHINAMFG Steel Miniature Linear Slide Rail Guide for Micro Robot Mgr Series   vacuum pump oil
editor by CX 2023-11-16

China OEM Wholesale Price Helical Gear High Precision 3-5 Arcmin Planetary Gearbox Speed Reducer wholesaler

Product Description

Wholesale Price Helical Gear High Precision 3-5 Arcmin Planetary Gearbox Speed Reducer

PAR gearbox
1. The spiral bevel gear reversing mechanism realizes right angle steering output
2. The installation distance of spiral bevel gear pair can be adjusted, and the working sound is lower
3. The grinding bevel gear pair can be selected, and the working sound is more stable and quiet
4. Integrated design, high precision and high rigidity
5. The double support cage planet carrier structure has high reliability and is suitable for high-speed and frequent forward and reverse rotation
6. Compared with the corresponding square fuselage series, it has the same performance and higher cost performance
7. Coupling meter, more connection options, keyway can be opened
8. Helical gear transmission, low return clearance and more accurate positioning
9.Size range:140-180 mm
10.Ratio range:3-100
11.Precision range:3-5arcmin (P1); 5-8arcmin (P2)

Product Parameters

Specifications PAR140 PAR180
Technal Parameters
Max. Torque Nm 1.5times rated torque
Emergency Stop Torque Nm 2.5times rated torque
Max. Radial Load N 9400 14500
Max. Axial Load N 4700 7250
Torsional Rigidity Nm/arcmin 47 130
Max.Input Speed rpm 6000 6000
Rated Input Speed rpm 3000 3000
Noise dB ≤68 ≤68
Average Life Time h 20000
Efficiency Of Full Load % L1≥95%       L2≥90%
Return Backlash P1 L1 arcmin ≤5 ≤5
L2 arcmin ≤7 ≤7
P2 L1 arcmin ≤8 ≤8
L2 arcmin ≤10 ≤10
Moment Of Inertia Table L1 3 Kg*cm2 23.5 69.2
4 Kg*cm2 21.5 68.6
5 Kg*cm2 21.5 68.6
7 Kg*cm2 21.5 68.6
8 Kg*cm2 20.5 /
10 Kg*cm2 20.1 66.2
14 Kg*cm2 / 68.6
20 Kg*cm2 / 68.6
L2 25 Kg*cm2 6.88 23.8
30 Kg*cm2 7.1 22.2
35 Kg*cm2 6.88 22.2
40 Kg*cm2 6.88 22.2
50 Kg*cm2 6.88 22.2
70 Kg*cm2 6.88 22.2
100 Kg*cm2 6.34 21.6
Technical Parameter Level Ratio   PAR140 PAR180
Rated Torque L1 3 Nm 360 880
4 Nm 480 1100
5 Nm 480 1100
7 Nm 480 1100
8 Nm 440 /
10 Nm 360 1100
L2 14 Nm / 1100
20 Nm / 1100
25 Nm 480 1100
30 Nm 360 880
35 Nm 480 1100
40 Nm 480 1100
50 Nm 480 1100
70 Nm 480 1100
100 Nm 360 1100
Degree Of Protection   IP65
Operation Temprature ºC  – 10ºC to -90ºC
Weight L1 kg 20.8 41.9
L2 kg 26.5 54.8

Company Profile

Packaging & Shipping

1. Lead time: 7-10 working days as usual, 20 working days in busy season, it will be based on the detailed order quantity;
2. Delivery: DHL/ UPS/ FEDEX/ EMS/ TNT

FAQ

1. who are we?
Hefa Group is based in ZheJiang , China, start from 1998,has a 3 subsidiaries in total.The Main Products is planetary gearbox,timing belt pulley, helical gear,spur gear,gear rack,gear ring,chain wheel,hollow rotating platform,module,etc

2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

3.how to choose the suitable planetary gearbox?
First of all,we need you to be CZPT to provide relevant parameters.If you have a motor drawing,it will let us recommend a suitable gearbox for you faster.If not,we hope you can provide the following motor parameters:output speed,output torque,voltage,current,ip,noise,operating conditions,motor size and power,etc

4. why should you buy from us not from other suppliers?
We are a 22 years experiences manufacturer on making the gears, specializing in manufacturing all kinds of spur/bevel/helical gear, grinding gear, gear shaft, timing pulley, rack, planetary gear reducer, timing belt and such transmission gear parts

5. what services can we provide?
Accepted Delivery Terms: Fedex,DHL,UPS;
Accepted Payment Currency:USD,EUR,HKD,GBP,CNY;
Accepted Payment Type: T/T,L/C,PayPal,Western Union;
Language Spoken:English,Chinese,Japanese

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car, Textile Machinery
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Helical Gear
Step: Double-Step
Samples:
US$ 1969/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Motor

How to Select a Gear Motor

A gearmotor is an electrical machine that transfers energy from one place to another. There are many types of gearmotors. This article will discuss the types of gearmotors, including Angular geared motors, Planetary gearboxes, Hydraulic gear motors, and Croise motors. In addition to its uses, gearmotors have many different characteristics. In addition, each type has distinct advantages and disadvantages. Listed below are a few tips on selecting a gearmotor.

Angular geared motors

Angular geared motors are the optimum drive element for applications where torques, forces, and motions need to be transferred at an angle. Compared to other types of geared motors, these have few moving parts, a compact design, and a long life. Angular geared motors are also highly efficient in travel drive applications. In addition to their durability, they have a low maintenance requirement and are highly corrosion-resistant.
Helical worm geared motors are a low-cost solution for drives that employ angular geared motors. They combine a worm gear stage and helical input stage to offer higher efficiency than pure worm geared motors. This drive solution is highly reliable and noise-free. Angular geared motors are often used in applications where noise is an issue, and helical worm geared motors are particularly quiet.
The gear ratio of an angular geared motor depends on the ratio between its input and output shaft. A high-quality helical geared motor has a relatively low mechanical noise level, and can be installed in almost any space. The torque of a helical geared motor can be measured by using frequency measurement equipment. The energy efficiency of angular geared motors is one of the most important factors when choosing a motor. Its symmetrical arrangement also allows it to operate in low-speed environments.
When selecting the right angular geared motor, it is important to keep in mind that increased torque will lead to poor output performance. Once a gear motor reaches its stall torque, it will no longer function properly. This makes it important to consult a performance curve to choose the appropriate motor. Most DC motor manufacturers are more than happy to provide these to customers upon request. Angular geared motors are more expensive than conventional worm gear motors.

Planetary gearboxes

Planetary gearboxes are used in industrial machinery to generate higher torque and power density. There are three main types of planetary gearboxes: double stage, triple stage, and multistage. The central sun gear transfers torque to a group of planetary gears, while the outer ring and spindle provide drive to the motor. The design of planetary gearboxes delivers up to 97% of the power input.
The compact size of planetary gears results in excellent heat dissipation. In some applications, lubrication is necessary to improve durability. Nevertheless, if you are looking for high speed transmission, you should consider the additional features, such as low noise, corrosion resistance, and construction. Some constructors are better than others. Some are quick to respond, while others are unable to ship their products in a timely fashion.
The main benefit of a planetary gearbox is its compact design. Its lightweight design makes it easy to install, and the efficiency of planetary gearboxes is up to 0.98%. Another benefit of planetary gearboxes is their high torque capacity. These gearboxes are also able to work in applications with limited space. Most modern automatic transmissions in the automotive industry use planetary gears.
In addition to being low in cost, planetary gearboxes are a great choice for many applications. Neugart offers both compact and right angle versions. The right angle design offers a high power-to-weight ratio, making it ideal for applications where torque is needed to be transmitted in reverse mode. So if you’re looking for an efficient way to move heavy machinery around, planetary gearboxes can be a great choice.
Another advantage of planetary gearboxes is their ability to be easily and rapidly changed from one application to another. Since planetary gears are designed to be flexible, you don’t have to buy new ones if you need to change gear ratios. You can also use planetary gears in different industries and save on safety stock by sharing common parts. These gears are able to withstand high shock loads and demanding conditions.
Motor

Hydraulic gear motors

Hydraulic gear motors are driven by oil that is pumped into a gear box and causes the gears to rotate. This method of energy production is quiet and inexpensive. The main drawbacks of hydraulic gear motors are that they are noisy and inefficient at low speeds. The other two types of hydraulic motors are piston and vane-type hydraulic motors. The following are some common benefits of hydraulic gear motors.
A hydraulic gear motor is composed of two gears – a driven gear and an idler. The driven gear is attached to the output shaft via a key. High-pressure oil flows into the housing between the gear tips and the motor housing, and the oil then exits through an outlet port. Unlike a conventional gear motor, the gears mesh to prevent the oil from flowing backward. As a result, they are an excellent choice for agricultural and industrial applications.
The most common hydraulic gear motors feature a gerotor and a drive gear. These gears mesh with a larger gear to produce rotation. There are also three basic variations of gear motors: roller-gerotor, gerotor, and differential. The latter produces higher torque and less friction than the previous two. These differences make it difficult to choose which type is the best for your needs. A high-performance gear motor will last longer than an ordinary one.
Radial piston hydraulic motors operate in the opposite direction to the reciprocating shaft of an electric gearmotor. They have nine pistons arranged around a common center line. Fluid pressure causes the pistons to reciprocate, and when they are stationary, the pistons push the fluid out and move back in. Because of the high pressure created by the fluid, they can rotate at speeds up to 25,000RPM. In addition, hydraulic gear motors are highly efficient, allowing them to be used in a wide range of industrial and commercial applications.
Hydraulic gear motors complement hydraulic pumps and motors. They are also available in reversible models. To choose the right hydraulic motor for your project, take time to gather all the necessary information about the installation process. Some types require specialized expertise or complicated installation. Also, there are some differences between closed and open-loop hydraulic motors. Make sure to discuss the options with a professional before you make a decision.
Motor

Croise motors

There are many advantages to choosing a Croise gear motor. It is highly compact, with less weight and space than standard motors. Its right-angle shaft and worm gear provide smooth, quiet operation. A silent-type brake ensures no metallic sound during operation. It also offers excellent positioning accuracy and shock resistance. This is why this motor is ideal for high-frequency applications. Let’s take a closer look.
A properly matched gearmotor will provide maximum torque output in a specified period. Its maximum developing torque is typically the rated output torque. A one-twelfth-horsepower (1/8 horsepower) motor can meet torque requirements of six inch-pounds, without exceeding its breakdown rating. This lower-cost unit allows for production variations and allows the customer to use a less powerful motor. Croise gear motors are available in a variety of styles.

China OEM Wholesale Price Helical Gear High Precision 3-5 Arcmin Planetary Gearbox Speed Reducer   wholesaler China OEM Wholesale Price Helical Gear High Precision 3-5 Arcmin Planetary Gearbox Speed Reducer   wholesaler
editor by CX 2023-11-15

China high quality 6000rpm High Precision Low Noise Ratio 20: 1 Planetary Gearbox Reducer supplier

Product Description

6000RPM High Precision Low Noise Ratio 20:1 Planetary Gearbox Reducer

Planetary gearbox is a kind of reducer with wide versatility. The inner gear adopts low carbon alloy steel carburizing quenching and grinding or nitriding process. Planetary gearbox has the characteristics of small structure size, large output torque, high speed ratio, high efficiency, safe and reliable performance, etc. The inner gear of the planetary gearbox can be divided into spur gear and helical gear. Customers can choose the right precision reducer according to the needs of the application.

Product Parameters

Characteristics:
1.Spiral bevel gear reversing mechanism to realize right angle steering output;
2.The installation distance of spiral bevel gear pair is adjustable and the working sound is lower;
3.Grinding bevel gear can be selected,and the working sound is more stable and quiet;
4.Integrated structure,high precision,high rigidity;
5.Double support case planet carrier structure,high reliable,suitable for high-speed frequent and reverse rotation;
6.With axial clearance adjustment function;
7.Collet type locking design,higher coaxiality of motor installtion;
8.Helical gear transmission ,low backlash,more accurate positioning;
9.Size range:42-120mm;
10.Ratio range:3-100;
11.Precision range:3-5arcmin (P1);5-8arcmin (P2)

Specifications PXR42 PXR60 PXR90 PXR120
Technal Parameters
Max. Torque Nm 1.5times rated torque
Emergency Stop Torque Nm 2.5times rated torque
Max. Radial Load N 780 1530 3300 6700
Max. Axial Load N 390 600 1500 3000
Torsional Rigidity Nm/arcmin 2.5 6 12 23
Max.Input Speed rpm 8000 8000 6000 6000
Rated Input Speed rpm 4000 4000 3000 3000
Noise dB ≤56 ≤64 ≤66 ≤66
Average Life Time h 20000
Efficiency Of Full Load % L1≥95%       L2≥90%
Return Backlash P1 L1 arcmin ≤3 ≤5 ≤5 ≤5
L2 arcmin ≤5 ≤7 ≤7 ≤7
P2 L1 arcmin ≤5 ≤8 ≤8 ≤8
L2 arcmin ≤7 ≤10 ≤10 ≤10
Moment Of Inertia Table L1 3 Kg*cm2 / 0.4 2.28 6.87
4 Kg*cm2 0.12 0.4 2.28 6.87
5 Kg*cm2 0.09 0.4 2.28 6.87
7 Kg*cm2 0.09 0.4 2.28 6.87
8 Kg*cm2 / 0.4 1.45 4.76
10 Kg*cm2 0.09 0.3 1.45 4.76
14 Kg*cm2 / 0.4 2.28 6.87
20 Kg*cm2 / 0.4 2.28 6.87
L2 25 Kg*cm2 0.09 0.4 2.28 6.87
30 Kg*cm2 / 0.4 2.28 6.87
35 Kg*cm2 0.09 0.4 2.28 6.87
40 Kg*cm2 0.09 0.4 2.28 6.87
50 Kg*cm2 0.09 0.3 1.45 4.76
70 Kg*cm2 0.09 0.3 1.45 4.76
100 Kg*cm2 0.07 0.3 1.45 4.76
Technical Parameter Level Ratio   PXR42 PXR60 PXR90 PXR120
Rated Torque L1 3 Nm / 40 105 165
4 Nm 17 45 130 230
5 Nm 15 45 130 230
7 Nm 12 45 100 220
8 Nm / 45 90 200
10 Nm 10 45 130 230
14 Nm / 45 100 220
20 Nm / 30 75 175
L2 25 Nm 15 45 130 230
30 Nm / 40 105 165
35 Nm 15 45 130 230
40 Nm 17 45 130 230
50 Nm 15 45 130 230
70 Nm 12 45 130 230
100 Nm 15 46 130 230
Degree Of Protection   IP65
Operation Temprature ºC  – 10ºC to -90ºC
Weight L1 kg 0.7 2.05 6.45 13.7
L2 kg 0.9 3.15 8.8 17.2

Company Profile

Packaging & Shipping

1. Lead time: 7-10 working days as usual, 20 working days in busy season, it will be based on the detailed order quantity;
2. Delivery: DHL/ UPS/ FEDEX/ EMS/ TNT

FAQ

1. who are we?
Hefa Group is based in ZheJiang , China, start from 1998,has a 3 subsidiaries in total.The Main Products is planetary gearbox,timing belt pulley, helical gear,spur gear,gear rack,gear ring,chain wheel,hollow rotating platform,module,etc

2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

3. how to choose the suitable planetary gearbox?
First of all,we need you to be CZPT to provide relevant parameters.If you have a motor drawing,it will let us recommend a suitable gearbox for you faster.If not,we hope you can provide the following motor parameters:output speed,output torque,voltage,current,ip,noise,operating conditions,motor size and power,etc

4. why should you buy from us not from other suppliers?
We are 22 years experiences manufacturer on making the gears, specializing in manufacturing all kinds of spur/bevel/helical gear, grinding gear, gear shaft, timing pulley, rack, planetary gear reducer, timing belt and such transmission gear parts

5. what services can we provide?
Accepted Delivery Terms: Fedex,DHL,UPS;
Accepted Payment Currency:USD,EUR,HKD,GBP,CNY;
Accepted Payment Type: T/T,L/C,PayPal,Western Union;
Language Spoken:English,Chinese,Japanese

Application: Industrial
Speed: Low Speed
Function: Driving
Casing Protection: Closed Type
Number of Poles: 2
Starting Mode: Direct on-line Starting
Samples:
US$ 344/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Motor

Dynamic Modeling of a Planetary Motor

A planetary gear motor consists of a series of gears rotating in perfect synchrony, allowing them to deliver torque in a higher output capacity than a spur gear motor. Unlike the planetary motor, spur gear motors are simpler to build and cost less, but they are better for applications requiring lower torque output. That is because each gear carries the entire load. The following are some key differences between the two types of gearmotors.

planetary gear system

A planetary gear transmission is a type of gear mechanism that transfers torque from one source to another, usually a rotary motion. Moreover, this type of gear transmission requires dynamic modeling to investigate its durability and reliability. Previous studies included both uncoupled and coupled meshing models for the analysis of planetary gear transmission. The combined model considers both the shaft structural stiffness and the bearing support stiffness. In some applications, the flexible planetary gear may affect the dynamic response of the system.
In a planetary gear device, the axial end surface of the cylindrical portion is rotatable relative to the separating plate. This mechanism retains lubricant. It is also capable of preventing foreign particles from entering the planetary gear system. A planetary gear device is a great choice if your planetary motor’s speed is high. A high-quality planetary gear system can provide a superior performance than conventional systems.
A planetary gear system is a complex mechanism, involving three moving links that are connected to each other through joints. The sun gear acts as an input and the planet gears act as outputs. They rotate about their axes at a ratio determined by the number of teeth on each gear. The sun gear has 24 teeth, while the planet gears have three-quarters that ratio. This ratio makes a planetary motor extremely efficient.

planetary gear train

To predict the free vibration response of a planetary motor gear train, it is essential to develop a mathematical model for the system. Previously, static and dynamic models were used to study the behavior of planetary motor gear trains. In this study, a dynamic model was developed to investigate the effects of key design parameters on the vibratory response. Key parameters for planetary gear transmissions include the structure stiffness and mesh stiffness, and the mass and location of the shaft and bearing supports.
The design of the planetary motor gear train consists of several stages that can run with variable input speeds. The design of the gear train enables the transmission of high torques by dividing the load across multiple planetary gears. In addition, the planetary gear train has multiple teeth which mesh simultaneously in operation. This design also allows for higher efficiency and transmittable torque. Here are some other advantages of planetary motor gear trains. All these advantages make planetary motor gear trains one of the most popular types of planetary motors.
The compact footprint of planetary gears allows for excellent heat dissipation. High speeds and sustained performances will require lubrication. This lubricant can also reduce noise and vibration. But if these characteristics are not desirable for your application, you can choose a different gear type. Alternatively, if you want to maintain high performance, a planetary motor gear train will be the best choice. So, what are the advantages of planetary motor gears?

planetary gear train with fixed carrier train ratio

The planetary gear train is a common type of transmission in various machines. Its main advantages are high efficiency, compactness, large transmission ratio, and power-to-weight ratio. This type of gear train is a combination of spur gears, single-helical gears, and herringbone gears. Herringbone planetary gears have lower axial force and high load carrying capacity. Herringbone planetary gears are commonly used in heavy machinery and transmissions of large vehicles.
To use a planetary gear train with a fixed carrier train ratio, the first and second planets must be in a carrier position. The first planet is rotated so that its teeth mesh with the sun’s. The second planet, however, cannot rotate. It must be in a carrier position so that it can mesh with the sun. This requires a high degree of precision, so the planetary gear train is usually made of multiple sets. A little analysis will simplify this design.
The planetary gear train is made up of three components. The outer ring gear is supported by a ring gear. Each gear is positioned at a specific angle relative to one another. This allows the gears to rotate at a fixed rate while transferring the motion. This design is also popular in bicycles and other small vehicles. If the planetary gear train has several stages, multiple ring gears may be shared. A stationary ring gear is also used in pencil sharpener mechanisms. Planet gears are extended into cylindrical cutters. The ring gear is stationary and the planet gears rotate around a sun axis. In the case of this design, the outer ring gear will have a -3/2 planet gear ratio.
Motor

planetary gear train with zero helix angle

The torque distribution in a planetary gear is skewed, and this will drastically reduce the load carrying capacity of a needle bearing, and therefore the life of the bearing. To better understand how this can affect a gear train, we will examine two studies conducted on the load distribution of a planetary gear with a zero helix angle. The first study was done with a highly specialized program from the bearing manufacturer INA/FAG. The red line represents the load distribution along a needle roller in a zero helix gear, while the green line corresponds to the same distribution of loads in a 15 degree helix angle gear.
Another method for determining a gear’s helix angle is to consider the ratio of the sun and planet gears. While the sun gear is normally on the input side, the planet gears are on the output side. The sun gear is stationary. The two gears are in engagement with a ring gear that rotates 45 degrees clockwise. Both gears are attached to pins that support the planet gears. In the figure below, you can see the tangential and axial gear mesh forces on a planetary gear train.
Another method used for calculating power loss in a planetary gear train is the use of an auto transmission. This type of gear provides balanced performance in both power efficiency and load capacity. Despite the complexities, this method provides a more accurate analysis of how the helix angle affects power loss in a planetary gear train. If you’re interested in reducing the power loss of a planetary gear train, read on!

planetary gear train with spur gears

A planetary gearset is a type of mechanical drive system that uses spur gears that move in opposite directions within a plane. Spur gears are one of the more basic types of gears, as they don’t require any specialty cuts or angles to work. Instead, spur gears use a complex tooth shape to determine where the teeth will make contact. This in turn, will determine the amount of power, torque, and speed they can produce.
A two-stage planetary gear train with spur gears is also possible to run at variable input speeds. For such a setup, a mathematical model of the gear train is developed. Simulation of the dynamic behaviour highlights the non-stationary effects, and the results are in good agreement with the experimental data. As the ratio of spur gears to spur gears is not constant, it is called a dedendum.
A planetary gear train with spur gears is a type of epicyclic gear train. In this case, spur gears run between gears that contain both internal and external teeth. The circumferential motion of the spur gears is analogous to the rotation of planets in the solar system. There are four main components of a planetary gear train. The planet gear is positioned inside the sun gear and rotates to transfer motion to the sun gear. The planet gears are mounted on a joint carrier that is connected to the output shaft.
Motor

planetary gear train with helical gears

A planetary gear train with helical teeth is an extremely powerful transmission system that can provide high levels of power density. Helical gears are used to increase efficiency by providing a more efficient alternative to conventional worm gears. This type of transmission has the potential to improve the overall performance of a system, and its benefits extend far beyond the power density. But what makes this transmission system so appealing? What are the key factors to consider when designing this type of transmission system?
The most basic planetary train consists of the sun gear, planet gear, and ring gear elements. The number of planets varies, but the basic structure of planetary gears is similar. A simple planetary geartrain has the sun gear driving a carrier assembly. The number of planets can be as low as two or as high as six. A planetary gear train has a low mass inertia and is compact and reliable.
The mesh phase properties of a planetary gear train are particularly important in designing the profiles. Various parameters such as mesh phase difference and tooth profile modifications must be studied in depth in order to fully understand the dynamic characteristics of a PGT. These factors, together with others, determine the helical gears’ performance. It is therefore essential to understand the mesh phase of a planetary gear train to design it effectively.

China high quality 6000rpm High Precision Low Noise Ratio 20: 1 Planetary Gearbox Reducer   supplier China high quality 6000rpm High Precision Low Noise Ratio 20: 1 Planetary Gearbox Reducer   supplier
editor by CX 2023-11-14

China Good quality Compact Size Wide Speed Regulating Range Accurancy DC Brushless Gear Motor 12V 24V manufacturer

Product Description

TaiBang Motor Industry Group Co., Ltd.

The main products is induction motor, reversible motor, DC brush gear motor, DC brushless gear motor, CH/CV big gear motors, Planetary gear motor ,Worm gear motor etc, which used widely in various fields of manufacturing pipelining, transportation, food, medicine, printing, fabric, packing, office, apparatus, entertainment etc, and is the preferred and matched product for automatic machine. 

Brushless DC motor is made up of motor and driver,which is a kind of typical product of mechanical and electrical integration.
It is highly regarded by market as its small volume,low noise,high efficiency,wide range of speed control and steady working state with less inaccuracy.The product is widely used in transmission equipment,textile machinery and medical devices,etc.

If you are interested in it,please feel free to contact Ms Susan Liu directly for more detail.

Motor Model Instruction

G2BLD15-24GN-18S

G 2 BLD 15 24 GN 18S
Factory Code Frame Size Motor Type Output Power Power Voltage Motor Shaft Type Motor Speed
GPG Motor Mounting Flange:
60mm,70mm,80mm,
90mm,100mm,ø45,ø60
BLD:Brushless Motor With Square Gearhead

BLDP:Brushless Motor With Planetary Gearhead
 

10:10W
15:15W
25:25W
40:40W
60:60W
90:90W
200:200W
400:400W
24:DC24V
36:DC36V
48:DC48V
110:DC110V
220:DC220V
GN:General Bevel Gear

GU:Reinforced Bevel Gear

A1:Milling Keyway

A:Flat type

15S:1500RPM
18S:1800RPM
25S:2500RPM
30S:3000RPM

Motor Performance Parameter

Model Voltage Rated Power No-load Parameter Load Parameter Motor Life
(Hours)
Motor Weight(kg)
Rotation Speed Current(A) Rotation Speed Torque(N.m) Current(A)
G2BLD15-24A(GN) 24V 15W 2200RPM Max 0.3 1800RPM 0.05 1.1 >5000 0.45
G2BLD15-36A(GN) 36V 2100RPM Max 0.2 1800RPM 0.05 0.7
G2BLD15-48A(GN) 48V 2100RPM Max 0.1 1800RPM 0.05 0.5
G2BLD25-24A(GN) 24V 25W 3300RPM Max 0.4 3000RPM 0.08 1.3 0.65
G2BLD25-36A(GN) 36V 3200RPM Max 0.3 3000RPM 0.08 0.9
G2BLD25-48A(GN) 48V 3200RPM Max 0.2 3000RPM 0.08 0.7

Gearhead Model Instruction

2GN-100K

2 GN 100 K
Dimension Gear Type Reduction Ratio Bearing type
2:60mm
3:70mm
4:80mm
5:90mm
6:104mm
GN:General Bevel Gear

GU:Reinforced Bevel Gear

1:100 Ball Bearinig

External Dimension

Motor Type Gearhead Type Gear Ratio
Dimension
G2BLD15-24GN

G2BLD15-36GN

G2BLD15-48GN

2GN(   )K 1:3~1:20 32mm
1:25~1:180 40mm


FAQ

Q: How about your company?
A:We are gear motor factory located in HangZhou city of China,we start from 1995 ,we have more than 1200 workers ,main products is AC micro gear motor 6W to 250W, AC small gear motor 100W to 3700W,brush DC motor 10W to 400W,brushless motor 10W to 750W,drum motor 60W to 3700W ,Planetary gearbox ,worm gearbox etc .

Q: How to choose a suitable motor?
A:If you have gear motor pictures or drawings to show us, or you tell us detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can suggest suitable motor per your request .

Q: Can you make the gear motor with customize specifications ?
Yes, we can customize per your request for the voltage, speed, torque and shaft size and shape. If you need additional wires or cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: What’s your lead time?
A: Usually our regular standard product will need 10-15days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.
Q: What is your MOQ?
A: If delivery by sea ,the minimum order is 100 pieces, if deliver by express, there is no limit.
Q: Do you have the item in stock?
A: I am sorry we do not have the item in stock, All products are made with orders.
Q: How to contact us ?
A: You can send us enquiry . 

 

Application: Universal, Industrial
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 4
Samples:
US$ 21/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Motor

How to Maximize Gear Motor Reliability

A gearmotor is a mechanical device used to transmit torque from one location to another. As its name implies, it is designed to rotate one object relative to another. Its main use is to transmit torque from one point to another. The most common types of gear motors are: worm, spur, and helical. Each of these has specific functions and can be used for a variety of applications. Reliability is also an important factor to consider when choosing a gearmotor.

Applications of a gear motor

Despite its small size, a gear motor has many applications. These include heavy machinery lifts, hospital beds, and power recliners. It is also found in many everyday products, such as electromechanical clocks and cake mixers. Its versatility allows it to produce a high force from a small electric motor. Here are some of its most common uses. You can also find a gear motor in many household appliances and vehicles.
Before selecting a gearmotor, consider the specifications of the machine you need to power. You should consider its size, weight, and ambient conditions, which include temperature regimes, noise levels, and contaminating sources. You should also take into account the envelope size, mounting method, and orientation. Other considerations include the expected service life, maintenance scope, and control type. The most suitable gearmotor for your specific application will be one that can handle the load.
The motor and gearbox types can be mixed and matched, depending on the application. A three-phase asynchronous motor and a permanent magnet synchronous servomotor are common choices for these devices. The type of motor and gearbox combination you choose will determine the power supply, the efficiency of the motor, and cost. Once you understand the application, it will be easy to integrate a gear motor into your system.
When used in industrial applications, gear motors are effective for reducing the speed of rotating shafts. One third of all industrial electric motor systems use gearing to reduce output speed. They can also save energy, which benefits the workers who operate them. In fact, industrial electric motor systems are responsible for nearly one-tenth of the carbon dioxide emissions that are produced by fossil-fueled power plants. Fortunately, efficiency and reliability are just two of the benefits of using gear motors.

Types

Before choosing a gearmotor, it is important to understand its specifications. The key factors to consider are the size, weight, and noise level of the gearmotor. Additionally, the power, torque, and speed of the motor are important factors. Specifications are also important for its operating environment, such as the temperature and the level of ingress protection. Finally, it is important to determine its duty cycle to ensure it will operate properly. To choose a suitable gearmotor, consult the specifications of your application.
Some common applications of gearmotors include packaging equipment, conveyors, and material handling applications. They also come with several advantages, including their ability to control both position and speed. This makes them ideal for applications where speed and positioning are crucial. Parallel-shaft gear units, for instance, are commonly used in conveyors, material handling, and steel mills. They are also able to operate in high-precision manufacturing. For these reasons, they are the most popular type of gearmotor.
There are three common types of gears. Helical gears have teeth that are inclined at 90 degrees to the axis of rotation, making them more efficient. Helicoidal gears, meanwhile, have a lower noise level and are therefore preferred for applications requiring high torque. Worm gears are preferred for applications where torque and speed reduction are important, and worm gears are suited for those conditions. They also have advantages over spur gears and worm gears.
The application of a gear motor is almost limitless. From heavy machine lifts to hospital bed lifting mechanisms, gear motors make it possible to use a small rotor at a high speed. Their lightweight construction also allows them to move heavy loads, such as cranes, but they do so slowly. Gear motors are an excellent choice in applications where space is an issue. A few common applications are discussed below. When choosing a gear motor, remember to choose the best size and application for your needs.
Motor

Functions

A gearmotor’s speed is directly proportional to the gear ratio. By dividing the input speed by the gear ratio, the output speed can be determined. Gear ratios above one reduce speed, while gear ratios below one increase speed. Efficiency of a gearmotor is defined as its ability to transfer energy through its gearbox. This efficiency factor takes into account losses from friction and slippage. Most gearmotor manufacturers will provide this curve upon request.
There are several factors that must be considered when choosing a gearmotor. First, the application must meet the desired speed and torque. Second, the output shaft must rotate in the desired direction. Third, the load must be properly matched to the gearmotor. Lastly, the operating environment must be considered, including the ambient temperature and the level of protection. These details will help you find the perfect gearmotor. You can compare various types of gear motors on this page and choose the one that will meet your needs.
The micro-DC gear motor is one of the most versatile types of geared motors. These motors are widely used in intelligent automobiles, robotics, logistics, and the smart city. Other applications include precision instruments, personal care tools, and cameras. They are also commonly found in high-end automotives and are used in smart cities. They also find use in many fields including outdoor adventure equipment, photography equipment, and electronics. The benefits of micro-DC gear motors are many.
The main function of a gear motor is to reduce the speed of a rotating shaft. Small electric clocks, for example, use a synchronous motor with a 1,200-rpm output speed to drive the hour, minute, and second hands. While the motor is small, the force it exerts is enormous, so it’s crucial to ensure that the motor isn’t over-powered. There is a high ratio between the input torque and the output torque.

Reliability

The reliability of a gear motor is dependent on a number of factors, including material quality, machining accuracy, and operating conditions. Gear failure is often more serious than surface fatigue, and can compromise personal safety. Reliability is also affected by the conditions of installation, assembly, and usage. The following sections provide an overview of some important factors that impact gear motor reliability. This article provides some tips to maximize gear motor reliability.
First and foremost, make sure you’re buying from a reliable supplier. Gear motors are expensive, and there is no standardization of the sizes. If a gear breaks, replacing it can take a lot of time. In the long run, reliability wins over anything. But this doesn’t mean that you can ignore the importance of gears – the quality of a gear motor is more important than how long it lasts.
Motor

Cost

The cost of a gear motor is relatively low compared to that of other forms of electric motors. This type of motor is commonly used in money counters, printers, smart homes, and automation equipment. A DC gear motor is also commonly used in automatic window machines, glass curtain walls, and banknote vending machines. There are many advantages to using a gear motor. Here are a few of them. Read on to learn more about them.
Speed management is another benefit of a gear motor. The motors tend to have less wear and tear than other motors, which means less frequent replacements. Additionally, many gear motors are easy to install and require less maintenance, which also helps reduce the overall cost of ownership. Lastly, because noise is a common concern for many electronic OEMs, DC gear motors are often quieter than their counterparts. For these reasons, they are often used in industrial settings.
Another advantage of an electric gear motor is its size and power. They are typically designed for 12V, 24V, and 48V voltages and 200-watt power. Their rated speed is 3000 rpm and their torque is 0.64 Nm. They are also more reliable than their AC counterparts and are ideal for many industrial applications. They have a high ratio of three to two, which makes them ideal for a variety of applications.
A gear motor is an electric motor that is coupled with a gear train. It uses AC or DC power, and is often called a gear reducer. The main purpose of these gear reducers is to multiply torque, while maintaining compact size and overall efficiency. However, the efficiency of a gear motor is also affected by ambient temperature and lubricants. If the gear motor is installed in the wrong location, it may be ineffective and result in premature failure of the machine.

China Good quality Compact Size Wide Speed Regulating Range Accurancy DC Brushless Gear Motor 12V 24V   manufacturer China Good quality Compact Size Wide Speed Regulating Range Accurancy DC Brushless Gear Motor 12V 24V   manufacturer
editor by CX 2023-11-13