Tag Archives: linear stepper motor

China high quality CHINAMFG Style 25mm Stepper Motor Linear Guide Rail Hgr25 with CHINAMFG Block H25c vacuum pump brakes

Product Description

Introduction:

Linear guide is consisted of rail, block, rolling elements, retainer, recirculator, end seal etc. By using the rolling elements, such as balls or rollers between the rail and block, the linear guide can achieve high precision linear motion.Linear guide block is divied to flange type and square type without flange.or Seal type block, Standard type block, Double bearing type block, Short type block. Also,linear block is divided to high load capacity with standard block lenth and ultra high load capacity with longer block length.

 

Catalogue of Linear Xihu (West Lake) Dis.ways:
1.HG SERIES IS A HIGH ASSEMBLED BALL LINEAR XIHU (WEST LAKE) DIS. RAIL;
2.EG SERIES IS A LOW ASSEMBLED BALL LINEAR XIHU (WEST LAKE) DIS. RAIL;
3.RG SERIES IS A LINEAR XIHU (WEST LAKE) DIS. WITH ROLLERS ROLLER TPYE BLOCK,WHICH CAN AFFORD HIGH LOAD;
4.MGN/MGW SERIES IS A SMALL/MINIATURE LINEAR XIHU (WEST LAKE) DIS. RAIL.

Structure of Linear Xihu (West Lake) Dis.ways:
1.Rolling cycle system: slider, guide rail, end cover, steel ball, ball holder;
2.Lubrication system: oil nozzle and tubing joint;
3.Dust-proof system: oil scraper, negative dust seal dust-proof sheet, guide rail bolt cover, metal scrap

Advantages of Linear Xihu (West Lake) Dis.ways:
1.Easy to install ,direct locking with screw and worktable;
2.Design of the ball arrange to upgrade weight bearing capacity;
3.Long life with high speed,high accuracy and linear motion;
4.High speed, low noise;
5.High rigidity ,multiple precision

Applicable Industries:
Building Material Shops, Manufacturing Plant, Machinery Repair Shops, Retail, Printing Shops, Construction works , Advertising Company, Others.

 

Regular specifications as follows table:

HGHCA/HA Series

HGLCA/HA Series

HGWCC/HC Series

HGH15CA/HGH15HA

HGL15CA/HGL15HA

HGW15CC/HGW15HC

HGH20CA/HGH20HA

HGL25CA/HGL25HA

HGW20CC/HGW20HC

HGH25CA/HGH25HA

HGL30CA/HGL30HA

HGW25CC/HGW25HC

HGH30CA/HGH30HA

 HGL35CA/HGL35HA

HGW30CC/HGW30HC

HGH35CA/HGH35HA

HGL45CA/HGL45HA

HGW35CC/HGW35HC

HGH45CA/HGH45HA

 HGL55CA/HGL55HA

HGW45CC/HGW45HC

HGH55CA/HGH55HA

 

HGW55CC/HGW55HC

HGH65CA/HGH65HA

 

HGW65CC/HGW65HC

 

Kindly pls contact service, if you have any problem, thank you!!!!!!!!!!!!!

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Warehouse Crane, Shipboard Crane, Goods Yard Crane, Medical Equipment, Automation Equipment, Building
Material: Steel
Structure: CNC
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Order Sample

HG linear guide
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

motor base

Are motor slide rails suitable for use with both AC and DC electric motors?

Yes, motor slide rails are suitable for use with both AC and DC electric motors. Here’s a detailed explanation:

Motor slide rails are mechanical components designed to support and guide the movement of motors in various applications. They are typically used to facilitate linear motion, allowing motors to be positioned or moved along a defined path. The compatibility of motor slide rails with AC and DC electric motors is primarily determined by the mechanical specifications and requirements of the specific motor and application.

The fundamental function of motor slide rails is to provide a stable and controlled movement mechanism for motors. This function is independent of the type of electric motor used, whether it is an AC motor or a DC motor. The key considerations when using motor slide rails with electric motors are related to the mechanical aspects rather than the electrical characteristics of the motors.

When selecting motor slide rails for use with electric motors, several factors need to be considered:

1. Load Capacity and Size:

The motor slide rails should be chosen based on the load capacity and size requirements of the electric motor. The rails should be able to support the weight of the motor and any additional loads. It is important to consider the size and dimensions of both the motor and the slide rails to ensure proper fit and compatibility.

2. Mounting and Integration:

The mounting and integration of the motor slide rails with the electric motor should be carefully evaluated. The slide rails should be compatible with the motor mounting brackets or any other components involved in the motor installation. Proper alignment and secure attachment of the motor to the slide rails are essential for safe and reliable operation.

3. Environmental Considerations:

The operating environment and conditions should also be taken into account when selecting motor slide rails for use with electric motors. Factors such as temperature, humidity, dust, or exposure to chemicals may affect the materials and performance of the slide rails. It is important to choose slide rails that are suitable for the specific environmental conditions in which the motor will operate.

Overall, motor slide rails can be used with both AC and DC electric motors as long as the mechanical specifications and requirements of the motors are taken into consideration. The compatibility of the slide rails with the electric motors is primarily determined by factors such as load capacity, size, mounting, integration, and environmental considerations. By selecting appropriate slide rails and ensuring proper installation, users can effectively utilize motor slide rails with both AC and DC electric motors in various applications.

motor base

How do motor slide rails enhance the ease of maintenance for electric motors?

Motor slide rails enhance the ease of maintenance for electric motors in several ways. Here’s a detailed explanation:

1. Access and Serviceability:

Motor slide rails provide convenient access to the motor for maintenance purposes. The rails allow for easy removal and reinstallation of the motor, simplifying tasks such as inspection, cleaning, lubrication, or replacement of motor components. By sliding the motor along the rails, technicians can gain better access to the motor from multiple angles, making it easier to perform maintenance tasks without the need for complex disassembly or extensive downtime.

2. Adjustable Mounting Positions:

Motor slide rails typically offer adjustable mounting positions, allowing for flexible motor positioning. This adjustability enhances maintenance by providing the ability to fine-tune the motor’s position and alignment. Technicians can easily adjust the motor’s position along the slide rails to optimize belt tension, pulley alignment, or coupling engagement. This ensures proper functioning and reduces the need for frequent maintenance adjustments due to misalignment or wear.

3. Quick Motor Replacement:

In cases where motor replacement is required, motor slide rails simplify the process. By sliding the motor along the rails, it can be easily disconnected from the power source and removed from the system. This makes motor replacement faster and more efficient, minimizing downtime during maintenance or motor failure situations. The slide rails also facilitate the quick installation of a new motor, ensuring a smooth and streamlined maintenance process.

4. Component Accessibility:

Motor slide rails improve access to other components connected to the motor. By sliding the motor along the rails, technicians can easily reach and service components such as motor couplings, pulleys, belts, or gearboxes. This accessibility simplifies maintenance tasks such as lubrication, inspection, or replacement of these components, reducing the time and effort required for maintenance procedures.

5. Modular Design and Replacement:

Some motor slide rail systems feature a modular design, allowing for easy replacement or upgrade of individual components. This modularity enhances maintenance by enabling the replacement of specific rail sections, mounting brackets, or other accessories, without the need for replacing the entire rail system. This reduces maintenance costs and downtime while ensuring the motor slide rails remain in optimal working condition.

6. Compatibility with Diagnostic Tools:

Motor slide rails can be compatible with diagnostic tools and condition monitoring equipment. The ease of access provided by the slide rails allows for the installation of sensors or monitoring devices to track motor performance, temperature, vibrations, or other parameters. This compatibility with diagnostic tools enables proactive maintenance, early fault detection, and efficient troubleshooting, leading to improved motor reliability and reduced downtime.

7. Safety and Ergonomics:

Motor slide rails contribute to maintenance efficiency by enhancing safety and ergonomics. The rails provide a stable and controlled environment for motor maintenance tasks, reducing the risk of accidents or injuries. The ability to slide the motor along the rails significantly reduces the physical strain on technicians, as they can access the motor at a comfortable working height and angle, minimizing fatigue and improving overall maintenance efficiency.

Overall, motor slide rails enhance the ease of maintenance for electric motors through improved access and serviceability, adjustable mounting positions, quick motor replacement, enhanced component accessibility, modular design and replacement options, compatibility with diagnostic tools, and improved safety and ergonomics. These features contribute to streamlined maintenance procedures, reduced downtime, and improved motor reliability, ultimately enhancing the overall performance and longevity of electric motors.

In summary, motor slide rails play a crucial role in enhancing the ease of maintenance for electric motors by providing convenient access, adjustable mounting positions, quick replacement options, improved component accessibility, compatibility with diagnostic tools, and improved safety and ergonomics.

motor base

What materials are commonly used in the construction of durable and reliable motor slide rails?

In the construction of durable and reliable motor slide rails, several materials are commonly used. Here’s a detailed explanation:

1. Steel:

Steel is one of the most widely used materials for motor slide rails due to its excellent strength, durability, and load-bearing capabilities. Steel slide rails offer high rigidity and resistance to bending or deformation, ensuring stable and secure motor installations. Different types of steel, such as carbon steel or stainless steel, can be utilized based on the specific application requirements and environmental conditions.

2. Aluminum:

Aluminum is another popular material choice for motor slide rails, especially in applications where weight reduction is a consideration. Aluminum slide rails offer a good balance of strength and lightweight characteristics. They are corrosion-resistant, making them suitable for indoor and outdoor installations. Aluminum slide rails are commonly used in applications where weight reduction, ease of handling, and corrosion resistance are important factors.

3. Cast Iron:

Cast iron is known for its exceptional strength and durability, making it suitable for heavy-duty motor applications. Cast iron slide rails provide superior load-bearing capabilities and resistance to wear and tear. They are commonly used in industrial settings where robustness and longevity are crucial. Cast iron slide rails can withstand high loads and provide stability and rigidity for reliable motor positioning and alignment.

4. Stainless Steel:

Stainless steel slide rails offer excellent corrosion resistance, making them ideal for applications where exposure to moisture, chemicals, or harsh environments is a concern. Stainless steel is highly durable, resistant to rust and staining, and can withstand high loads. These properties make stainless steel slide rails suitable for a wide range of industries, including food processing, pharmaceuticals, marine, and outdoor applications.

5. Engineering Plastics:

Certain engineering plastics, such as acetal (polyoxymethylene) or nylon, are used in the construction of motor slide rails. These materials offer good mechanical properties, such as low friction, high wear resistance, and self-lubricating characteristics. Engineering plastic slide rails are lightweight, corrosion-resistant, and can provide smooth and quiet operation. They are often utilized in applications where noise reduction, chemical resistance, or lightweight construction is desired.

6. Composite Materials:

Composite materials, such as fiberglass-reinforced plastic (FRP), are used in some motor slide rails. These materials offer a combination of strength, rigidity, and corrosion resistance. Composite slide rails are lightweight, non-conductive, and can provide excellent resistance to chemicals and environmental factors. They are commonly used in applications where weight reduction, electrical insulation, or resistance to corrosive substances is important.

The selection of materials for motor slide rails depends on various factors, including the specific application requirements, load capacities, environmental conditions, and desired performance characteristics. Manufacturers consider these factors to choose the most suitable material that ensures durability, reliability, and optimal performance of the motor slide rail system.

In summary, commonly used materials in the construction of durable and reliable motor slide rails include steel, aluminum, cast iron, stainless steel, engineering plastics, and composite materials. Each material has its specific advantages and is chosen based on factors such as strength, durability, load-bearing capacity, corrosion resistance, weight reduction, and environmental considerations.

China high quality CHINAMFG Style 25mm Stepper Motor Linear Guide Rail Hgr25 with CHINAMFG Block H25c   vacuum pump brakesChina high quality CHINAMFG Style 25mm Stepper Motor Linear Guide Rail Hgr25 with CHINAMFG Block H25c   vacuum pump brakes
editor by CX 2024-05-17

China OEM China Wholesalers Rgw45hb Ball Screw CNC Linear Guide Rail with Stepper Motor vacuum pump brakes

Product Description

 

China Wholesalers RGW45HB Ball Screw Cnc Linear Xihu (West Lake) Dis. Rail With Stepper Motor

Product Description

Linear Sliders can be divided into 3 types: roller linear guides, cylindrical linear guides, and ball linear guides. They are used to support and guide moving parts and perform reciprocating linear motion in a given direction. According to the nature of friction, linear motion guides can be divided into sliding friction guides, rolling friction guides, elastic friction guides, fluid friction guides, and other types.

Linear Xihu (West Lake) Dis.s
It mainly consists of sliders and guide rails, and sliders are mainly used in sliding friction guide rails. Linear guide rails, also known as line rails, slide rails, linear guide rails, and linear slide rails, are used in linear reciprocating motion applications and can bear a certain torque, and can achieve high-precision linear motion under high load conditions. In the mainland, it is called linear guide rail, and in ZheJiang , it is generally called linear guide rail and linear slide rail. Usually divided into square ball linear guides, double-axis core roller linear guides, and single-axis core linear guides.

The function of linear guide rail motion is to support and guide the moving parts and make a reciprocating linear motion in a given direction. According to the nature of friction, linear motion guides can be divided into sliding friction guides, rolling friction guides, elastic friction guides, fluid friction guides, and other types. Linear bearings are mainly used in automated machinery, such as machine tools imported from Germany, bending machines, laser welding machines, etc. Of course, linear bearings and linear axes are used together. Linear guides are mainly used in mechanical structures with high precision requirements. There is no intermediate medium between the moving elements and fixed elements of the linear guides, but rolling steel balls.

Application field
1. Linear guide rails are mainly used in automated machinery, such as machine tools imported from Germany, bending machines, laser welding machines, etc. Of course, linear guide rails and linear axes are used together.
2. Linear guide rails are mainly used in mechanical structures with relatively high precision requirements. There is no intermediate medium between the moving elements and fixed elements of the linear guide rails, but rolling steel balls are used. Because the rolling steel ball is suitable for high-speed motion, with a small friction coefficient and high sensitivity, it meets the working requirements of moving parts, such as tool holders and carriages of machine tools. If the force acting on the steel ball is too large, the steel ball will be preloaded for too long, resulting in increased movement resistance of the bracket.

Product Parameters

Product Name

CHINAMFG Linear Xihu (West Lake) Dis.

   Brand Name   HOTE BEARING

Model

CHINAMFG Linear Xihu (West Lake) Dis.&Block Full Sizes

MOQ

1 Piece

Packing

Original Color Box Packed

Precision

N / H / P / SP / UP

Pre-pressing

Z0 / Z1 / Z2 / Z3

Detailed Photos

 

 

 

FAQ

Q1:What is your Before-sales Service?
1>. Offer to bear related consultation about technology and application;

2>.Help customers with bearing choice, clearance configuration, product” life, and reliability analysis;

3>. Offer highly cost-effective and complete solution program according to site conditions;

4>. Offer localized program on introduced equipment to save running cost

Q2: What is your After-sales Service?
1>. Offer training about bearing installation and maintenance;

2>.Help customers with trouble diagnosis and failure analysis;

3>. Visit customers regularly and feedback on their rational suggestions and requirements to the company.

Q3: How about your company’s strength?
1>.FREE SAMPLES:
contact us by email or trade manager, we will send the free samples according to your request. 

2>. World-Class Bearing:
We provide our customers with all types of indigenous roller bearings of world-class quality.

3>.OEM or Non-Stand Bearings: 
Any requirement for Non-standard roller bearings is Easily Fulfilled by us due to our vast knowledge and links in the industry. 

4>.Genuine products With Excellent Quality: 
The company has always proved the 100% quality products it provides with genuine intent.

5>. After-Sales Service and Technical Assistance: 
The company provides after-sales service and technical assistance as per the customer’s requirements and needs.

6>.Quick Delivery: 
The company provides just-in-time delivery with its streamlined supply chain.

7>.Cost Saving: 
We provide long-life, shock-resistant, and high-reliability roller bearings with excellent quality and better performance.
Resulting in increased cost savings.

Q4: What will we do if you are not satisfied with the product?
A: If have any abnormal, Please contact us at first time, and we will immediately process

Q5: How long will you respond to our problems?
A: We will respond within 1 hour. 24 hours to solve your problem

Q6: Is optional lubrication provided?
A: We can offer a wide range of oils and greases for a variety of applications. Please contact our engineer for technical
assistance with any special requirements

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Warehouse Crane, Shipboard Crane, Goods Yard Crane, Building Crane, Workshop Crane
Material: Alloy
Structure: Hook Crane
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

motor base

Are there any energy efficiency benefits associated with specific types of motor slide rails?

Yes, specific types of motor slide rails can offer energy efficiency benefits. Here’s a detailed explanation:

The energy efficiency of motor slide rails is primarily influenced by their design, materials, and features. While the slide rails themselves do not directly impact the energy efficiency of the motor, certain characteristics can contribute to overall system efficiency. Here are some factors to consider:

1. Friction and Smooth Movement:

Motor slide rails that are designed to reduce friction and enable smooth movement can contribute to energy efficiency. By minimizing frictional forces, the motor requires less energy to overcome resistance and move along the slide rails. This can result in improved overall efficiency and reduced energy consumption.

2. Lubrication and Maintenance:

Proper lubrication of motor slide rails is crucial for minimizing friction and optimizing energy efficiency. Well-lubricated slide rails can reduce wear and frictional losses, allowing the motor to operate more efficiently. Regular maintenance, including lubricant checks and replacements, ensures that the slide rails maintain their energy-efficient performance over time.

3. Design and Materials:

The design and materials used in motor slide rails can also impact energy efficiency. Certain materials, such as those with low coefficients of friction or high strength-to-weight ratios, can reduce energy losses and improve overall efficiency. Additionally, the design of the slide rails, including their shape, profile, and load-bearing capacities, can optimize the motor’s performance and minimize energy waste.

4. Damping and Vibration Reduction:

Motor slide rails that incorporate damping mechanisms or vibration-reducing features can enhance energy efficiency. Excessive vibrations can lead to energy losses and increased wear on the motor. Slide rails designed to absorb or dampen vibrations can help maintain stable and efficient motor operation, resulting in energy savings.

5. Environmental Considerations:

Specific types of motor slide rails may also offer energy efficiency benefits in certain environmental conditions. For example, slide rails that are resistant to corrosion, dust, or moisture can help maintain their performance and efficiency over time. By minimizing the impact of environmental factors, the motor can operate optimally, reducing energy waste and improving efficiency.

It’s important to note that while specific types of motor slide rails can offer energy efficiency benefits, the overall energy efficiency of a motor system is influenced by multiple factors, including motor design, control systems, and operational practices. The selection of energy-efficient slide rails should be considered within the broader context of the entire motor system to maximize energy savings.

In summary, certain types of motor slide rails can contribute to energy efficiency by reducing friction, enabling smooth movement, utilizing appropriate materials, incorporating damping mechanisms, and considering environmental factors. By selecting and maintaining energy-efficient slide rails, it is possible to optimize the performance and energy efficiency of motor systems, leading to potential energy savings over the long term.

motor base

How do motor slide rails enhance the ease of maintenance for electric motors?

Motor slide rails enhance the ease of maintenance for electric motors in several ways. Here’s a detailed explanation:

1. Access and Serviceability:

Motor slide rails provide convenient access to the motor for maintenance purposes. The rails allow for easy removal and reinstallation of the motor, simplifying tasks such as inspection, cleaning, lubrication, or replacement of motor components. By sliding the motor along the rails, technicians can gain better access to the motor from multiple angles, making it easier to perform maintenance tasks without the need for complex disassembly or extensive downtime.

2. Adjustable Mounting Positions:

Motor slide rails typically offer adjustable mounting positions, allowing for flexible motor positioning. This adjustability enhances maintenance by providing the ability to fine-tune the motor’s position and alignment. Technicians can easily adjust the motor’s position along the slide rails to optimize belt tension, pulley alignment, or coupling engagement. This ensures proper functioning and reduces the need for frequent maintenance adjustments due to misalignment or wear.

3. Quick Motor Replacement:

In cases where motor replacement is required, motor slide rails simplify the process. By sliding the motor along the rails, it can be easily disconnected from the power source and removed from the system. This makes motor replacement faster and more efficient, minimizing downtime during maintenance or motor failure situations. The slide rails also facilitate the quick installation of a new motor, ensuring a smooth and streamlined maintenance process.

4. Component Accessibility:

Motor slide rails improve access to other components connected to the motor. By sliding the motor along the rails, technicians can easily reach and service components such as motor couplings, pulleys, belts, or gearboxes. This accessibility simplifies maintenance tasks such as lubrication, inspection, or replacement of these components, reducing the time and effort required for maintenance procedures.

5. Modular Design and Replacement:

Some motor slide rail systems feature a modular design, allowing for easy replacement or upgrade of individual components. This modularity enhances maintenance by enabling the replacement of specific rail sections, mounting brackets, or other accessories, without the need for replacing the entire rail system. This reduces maintenance costs and downtime while ensuring the motor slide rails remain in optimal working condition.

6. Compatibility with Diagnostic Tools:

Motor slide rails can be compatible with diagnostic tools and condition monitoring equipment. The ease of access provided by the slide rails allows for the installation of sensors or monitoring devices to track motor performance, temperature, vibrations, or other parameters. This compatibility with diagnostic tools enables proactive maintenance, early fault detection, and efficient troubleshooting, leading to improved motor reliability and reduced downtime.

7. Safety and Ergonomics:

Motor slide rails contribute to maintenance efficiency by enhancing safety and ergonomics. The rails provide a stable and controlled environment for motor maintenance tasks, reducing the risk of accidents or injuries. The ability to slide the motor along the rails significantly reduces the physical strain on technicians, as they can access the motor at a comfortable working height and angle, minimizing fatigue and improving overall maintenance efficiency.

Overall, motor slide rails enhance the ease of maintenance for electric motors through improved access and serviceability, adjustable mounting positions, quick motor replacement, enhanced component accessibility, modular design and replacement options, compatibility with diagnostic tools, and improved safety and ergonomics. These features contribute to streamlined maintenance procedures, reduced downtime, and improved motor reliability, ultimately enhancing the overall performance and longevity of electric motors.

In summary, motor slide rails play a crucial role in enhancing the ease of maintenance for electric motors by providing convenient access, adjustable mounting positions, quick replacement options, improved component accessibility, compatibility with diagnostic tools, and improved safety and ergonomics.

motor base

What is the purpose of motor slide rails in the context of electric motor installations?

In the context of electric motor installations, motor slide rails serve several important purposes. Here’s a detailed explanation:

1. Easy Motor Installation and Removal:

Motor slide rails provide a convenient and efficient method for installing and removing electric motors. These rails are typically mounted on a motor base or mounting platform and allow the motor to slide in and out smoothly. By using motor slide rails, the motor can be easily positioned and secured in place during installation, and later removed for maintenance or replacement without the need for complex disassembly.

2. Precise Motor Alignment:

Motor slide rails facilitate precise motor alignment with the driven equipment. They allow for horizontal adjustment, ensuring that the motor shaft is parallel and co-linear with the driven shaft. This alignment is crucial for optimal performance, minimizing energy losses, and reducing wear and tear on both the motor and the driven equipment. Motor slide rails offer the flexibility to make fine adjustments to achieve the desired alignment, resulting in improved efficiency and reliability.

3. Vibration Damping and Noise Reduction:

Motor slide rails help dampen vibrations generated by electric motors during operation. Vibrations can arise from factors such as motor imbalances, misalignment, or external forces. The use of slide rails with vibration-dampening properties or by incorporating additional vibration isolation mechanisms can reduce the transmission of vibrations to the surrounding structure. This dampening effect improves overall system performance, reduces noise levels, and protects other components from excessive vibrations.

4. Maintenance and Service Accessibility:

Motor slide rails provide easy access to the motor for maintenance and service tasks. By sliding the motor along the rails, technicians can quickly reach various motor components, such as bearings, cooling fans, or electrical connections, for inspection, lubrication, or repairs. This accessibility simplifies routine maintenance procedures, reduces downtime, and improves the overall serviceability of the motor.

5. Flexibility for Motor Positioning:

Motor slide rails offer flexibility in motor positioning within the installation. They allow for adjustments in the motor’s position, both horizontally and vertically, to accommodate specific space constraints or align with existing equipment. This flexibility is particularly beneficial when retrofitting motors into existing systems or when dealing with limited space. Motor slide rails enable customization of the motor’s position to optimize performance and ensure compatibility with the application requirements.

6. Load Distribution and Stability:

Motor slide rails contribute to load distribution and stability in electric motor installations. The rails help distribute the weight of the motor evenly across the mounting platform, preventing excessive stress on specific points. This load distribution improves the overall stability of the motor and reduces the risk of structural damage or misalignment caused by uneven weight distribution.

In summary, motor slide rails serve the purpose of facilitating easy motor installation and removal, enabling precise motor alignment, dampening vibrations, providing accessibility for maintenance and service tasks, offering flexibility in motor positioning, and contributing to load distribution and stability. By utilizing motor slide rails effectively, electric motor installations can achieve improved performance, reduced downtime, and enhanced overall reliability.

China OEM China Wholesalers Rgw45hb Ball Screw CNC Linear Guide Rail with Stepper Motor   vacuum pump brakesChina OEM China Wholesalers Rgw45hb Ball Screw CNC Linear Guide Rail with Stepper Motor   vacuum pump brakes
editor by CX 2024-04-10

China 12V 24V 2 Phase Hybrid Linear Step Stepper Stepping Motor NEMA 17 23 34 with Planetary Gearbox / Brake / Encoder / Integrated Driver for 3D Printer Xyz Laser with Best Sales

Item Description

12v 24v 2 Section Hybrid Linear Phase Stepper Stepping Motor NEMA with Planetary Gearbox / Brake / Encoder / Integrated Driver for 3D Printer XYZ Laser

Product Description

GenHangZhou Specification
Merchandise Specs
Action Angle one.8° or .9°
Temperature Rise 80ºCmax
Ambient Temperature -20ºC~+50ºC
Insulation Resistance one hundred MΩ Min. ,500VDC
Dielectric Toughness 500VAC for 1minute
Shaft Radial Perform .02Max. (450g-load)
Shaft Axial Engage in .08Max. (450g-load)
Max. radial drive 28N (20mm from the flange)
Max. axial drive 10N

one. The magnetic steel is higher grade,we generally use the SH amount kind.
two. The rotor is be coated,decrease burrs,operating efficiently,significantly less sounds. We test the stepper motor areas action by stage.
three. Stator is be examination and rotor is be test before assemble.
four. Right after we assemble the stepper motor, we will do 1 a lot more test for it, to make sure the high quality is good.

JKONGMOTOR stepping motor is a motor that converts electrical pulse indicators into corresponding angular displacements or linear displacements. This small stepper motor can be widely employed in various fields, such as a 3D printer, phase lighting, laser engraving, textile equipment, medical tools, automation products, etc.

one.8 Diploma Stepper Motor Parameters:

Model No. Phase Angle Motor Size Existing Resistance Inductance Holding Torque # of Prospects Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH kg.cm No. g.cm g.cm2 Kg
JK42HS25-0404 1.8 25 .4 24 36 1.eight four seventy five 20 .15
JK42HS28-0504 one.eight 28 .five 20 21 one.5 four 85 24 .22
JK42HS34-1334 one.eight 34 one.33 2.one 2.five 2.two four one hundred twenty 34 .22
JK42HS34-0406 1.8 34 .four 24 fifteen 1.six six 120 34 .22
JK42HS34-0956 1.eight 34 .ninety five four.2 2.5 1.six six 120 34 .22
JK42HS40-0406 one.eight forty .4 thirty thirty two.6 6 150 fifty four .28
JK42HS40-1684 one.eight forty one.68 one.sixty five three.two three.6 four a hundred and fifty fifty four .28
JK42HS40-1206 one.eight 40 one.two three two.seven 2.9 six one hundred fifty 54 .28
JK42HS48-0406 one.8 forty eight .four thirty twenty five three.1 six 260 sixty eight .35
JK42HS48-1684 1.eight forty eight 1.68 1.65 two.eight four.four four 260 sixty eight .35
JK42HS48-1206 one.8 48 one.2 3.three two.eight three.seventeen 6 260 68 .35
JK42HS60-0406 1.8 sixty .four 30 39 six.5 six 280 102 .five
JK42HS60-1704 1.eight sixty one.7 3 six.two seven.three 4 280 102 .5
JK42HS60-1206 1.8 sixty 1.two six 7 five.6 6 280 102 .5

.9 Degree Stepper Motor Parameters:

Model No. Action Angle Motor Duration Current Resistance Inductance Keeping Torque # of Prospects Detent Torque Rotor Inertia Motor
( °) (L)mm A Ω mH kg.cm No. g.cm g.cm2 Kg
JK42HM34-1334 .9 34 one.33 two.one four.2 2.two four 200 35 .22
JK42HM34- 0571 .9 34 .31 38.five 33 1.58 6 two hundred 35 .22
JK42HM34-0956 .9 34 .ninety five four.2 4 one.fifty eight six 200 35 .22
JK42HM40-1684 .9 forty 1.sixty eight 1.65 3.two three.three 4 220 fifty four .28
JK42HM40-0406 .nine forty .four 30 30 2.fifty nine six 220 54 .28
JK42HM40-1206 .nine forty one.2 3.3 3.four two.59 six 220 54 .28
JK42HM48-1684 .9 forty eight one.68 one.65 four.one 4.4 four 250 68 .35
JK42HM48-1206 .9 forty eight one.two 3.three four 3.17 six 250 68 .35
JK42HM48-0406 .9 48 .4 thirty 38 3.17 six 250 68 .35
JK42HM60-1684 .9 60 one.68 1.65 five 5.five 4 270 106 .55

Nema 17 HSP Planetary Gearbox Stepper Motor Parameters:

General Specification
Housing Content Metal
Bearing at Output Ball Bearings
Max.Radial Load(12mm from flange) ≤80N
Max.Shaft Axial Load ≤30N
Radial Perform of Shaft (in close proximity to to Flange) ≤0.06mm
Axial Engage in of Shaft ≤0.3mm
Backlash at No-load 1.5°

 

42HSP Planetary Gearbox Parameters
Reduction ratio three.seventy one five.18 thirteen.76 19.two 26.eight 51 71 ninety nine.5 139
Number of gear trains 1 2 3
Duration(L2): mm 27.3 35 42.seven
Max.rated torque: kg.cm 20 30 40
Short time permissible torque: kg.cm 40 60 80
Excess weight: g 350 450 550

Nema 17 HSG Planetary Gearbox Stepper Motor Parameters:

General Specification
Housing Content Steel
Bearing at Output Ball Bearings
Max.Radial Load(12mm from flange) ≤20N
Max.Shaft Axial Load ≤15N
Radial Enjoy of Shaft (in close proximity to to Flange) ≤0.06mm
Axial Play of Shaft ≤0.3mm
Backlash at No-load one.5°

 

42HSG Planetary Gearbox Parameters
Reduction ratio five 10 15 20
Variety of equipment trains 1 2
(L2)Duration: (mm) 28.five
Peak torque: (kg.cm) 10
Backlash at Noload: (°) 4deg 3deg

Nema seventeen PLE Planetary Gearbox Stepper Motor Parameters:

PLE42-L1 Electrical Specification:
Specification PLE42-L1
Design PLE42-03 PLE42-04 PLE42-05 PLE42-07 PLE42-571
Reduction Ratio three:01 four:01 five:01 seven:01 ten:01
Output Torque 8N.m 9N.m 9N.m 5N.m 5N.m
Fail-cease Torque 16N.m 18N.m 18N.m 10N.m 10N.m
Suited Motor Φ5-10 / Φ22-2 / F31-M3
Rated Enter Pace 3000min-1
Max Enter Speed 6000min-1
Regular Lifespan 20000h
Backlash ≤15arcmin
Performance 0.96
Sounds ≤55dB
Work Temperature -10°~+90°
Diploma of Defense IP54
Weight 0.25kg

 

PLE42-L2 Electrical Specification:
Specification PLE42-L2
Model PLE42-012 PLE42-015 PLE42-016 PLE42-571 PLE42-571 PLE42-571
Reduction Ratio 12:01 15:01 sixteen:01 twenty:01 twenty five:01:00 28:01:00
Output Torque 10N.m 10N.m 12N.m 12N.m 10N.m 10N.m
Are unsuccessful-cease Torque 20N.m 20N.m 24N.m 24N.m 20N.m 20N.m
Design PLE42-035 PLE42-040 PLE42-050 PLE42-070 PLE42-one hundred /
Reduction Ratio 35:01:00 forty:01:00 fifty:01:00 70:01:00 a hundred:01:00 /
Output Torque 10N.m 10N.m 10N.m 10N.m 10N.m /
Fall short-end Torque 20N.m 20N.m 20N.m 20N.m 20N.m /
Ideal Motor Φ5-10 / Φ22-2 / F31-M3
Rated Input Velocity 3000min-one
Max Enter Pace 6000min-1
Regular Lifespan 20000h
Backlash ≤20arcmin
Performance 94%
Sound ≤55dB
Function Temperature -10°~+90°
Degree of Defense IP54
Fat 0.35kg

Jkongmotor Other Hybrid Stepper Motor:

Motor series Phase No. Action angle Motor length Motor measurement Qualified prospects No. Keeping torque
Nema eight two section 1.8 diploma thirty~42mm 20x20mm 4 one hundred eighty~300g.cm
Nema 11 2 stage 1.8 diploma 32~51mm 28x28mm 4 or six 430~1200g.cm
Nema 14 two section .9 or 1.8 diploma 27~42mm 35x35mm four a thousand~2000g.cm
Nema 16 2 stage 1.8 degree 20~44mm 39x39mm four or six 650~2800g.cm
Nema 17 two stage .9 or 1.8 diploma twenty five~60mm 42x42mm four or 6 one.5~7.3kg.cm
Nema 23 two section .9 or 1.8 degree forty one~112mm 57x57mm four or 6 or eight .39~3.1N.m
3 period one.2 degree 42~79mm 57x57mm .45~1.5N.m
Nema 24 two section 1.8 diploma fifty six~111mm 60x60mm eight 1.17~4.5N.m
Nema 34 two period one.8 diploma sixty seven~155mm 86x86mm four or eight three.4~twelve.2N.m
three period 1.2 degree sixty five~150mm 86x86mm two~7N.m
Nema forty two two period one.8 diploma 99~201mm 110x110mm four 11.2~28N.m
three period 1.2 degree 134~285mm 110x110mm eight~25N.m
Nema fifty two two section one.8 degree 173~285mm 130x130mm four thirteen.3~22.5N.m
three section one.2 diploma 173~285mm 130x130mm 13.3~22.5N.m
Above only for agent products, products of specific ask for can be manufactured in accordance to the client ask for.

 

Stepping Motor Custom-made

 

 

Thorough Images

                                       Brushless Dc Motor Kit                                                                      Stepper Motor with Encoder

                   Linear Stepper Motor                              3 4 Axis Stepper Motor Kits                       Hollow Shaft Stepper Motor

 

                        Bldc Motor                                              Brushed Dc Motor                                      Hybrid Stepper Motor                                   

 

Company Profile

HangZhou CZPT Co., Ltd was a higher technology sector zone in HangZhou, china. Our items utilised in numerous types of devices, this sort of as 3d printer CNC equipment, healthcare gear, weaving printing equipments and so on.
JKONGMOTOR warmly welcome ‘OEM’ & ‘ODM’ cooperations and other companies to create prolonged-phrase cooperation with us.
Company spirit of sincere and good popularity, gained the recognition and assistance of the wide masses of clients, at the same time with the domestic and international suppliers close local community of pursuits, the organization entered the phase of phase of benign growth, laying a strong foundation for the strategic aim of realizing only actually the sustainable improvement of the firm.

Equipments Present:
Manufacturing Movement:
Bundle:
Certification:

 


/ Piece
|
10 Pieces

(Min. Order)

###

Shipping Cost:

Estimated freight per unit.



To be negotiated

###

Application: Printing Equipment
Speed: Variable Speed
Number of Stator: Two-Phase

###

Samples:
US$ 8.69/Piece
1 Piece(Min.Order)

|

Order Sample

need to confirm the cost with seller

###

Customization:
Available

|


###

Genaral Specification
Item Specifications
Step Angle 1.8° or 0.9°
Temperature Rise 80ºCmax
Ambient Temperature -20ºC~+50ºC
Insulation Resistance 100 MΩ Min. ,500VDC
Dielectric Strength 500VAC for 1minute
Shaft Radial Play 0.02Max. (450g-load)
Shaft Axial Play 0.08Max. (450g-load)
Max. radial force 28N (20mm from the flange)
Max. axial force 10N

###

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH kg.cm No. g.cm g.cm2 Kg
JK42HS25-0404 1.8 25 0.4 24 36 1.8 4 75 20 0.15
JK42HS28-0504 1.8 28 0.5 20 21 1.5 4 85 24 0.22
JK42HS34-1334 1.8 34 1.33 2.1 2.5 2.2 4 120 34 0.22
JK42HS34-0406 1.8 34 0.4 24 15 1.6 6 120 34 0.22
JK42HS34-0956 1.8 34 0.95 4.2 2.5 1.6 6 120 34 0.22
JK42HS40-0406 1.8 40 0.4 30 30 2.6 6 150 54 0.28
JK42HS40-1684 1.8 40 1.68 1.65 3.2 3.6 4 150 54 0.28
JK42HS40-1206 1.8 40 1.2 3 2.7 2.9 6 150 54 0.28
JK42HS48-0406 1.8 48 0.4 30 25 3.1 6 260 68 0.35
JK42HS48-1684 1.8 48 1.68 1.65 2.8 4.4 4 260 68 0.35
JK42HS48-1206 1.8 48 1.2 3.3 2.8 3.17 6 260 68 0.35
JK42HS60-0406 1.8 60 0.4 30 39 6.5 6 280 102 0.5
JK42HS60-1704 1.8 60 1.7 3 6.2 7.3 4 280 102 0.5
JK42HS60-1206 1.8 60 1.2 6 7 5.6 6 280 102 0.5

###

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Motor
( °) (L)mm A Ω mH kg.cm No. g.cm g.cm2 Kg
JK42HM34-1334 0.9 34 1.33 2.1 4.2 2.2 4 200 35 0.22
JK42HM34-0316 0.9 34 0.31 38.5 33 1.58 6 200 35 0.22
JK42HM34-0956 0.9 34 0.95 4.2 4 1.58 6 200 35 0.22
JK42HM40-1684 0.9 40 1.68 1.65 3.2 3.3 4 220 54 0.28
JK42HM40-0406 0.9 40 0.4 30 30 2.59 6 220 54 0.28
JK42HM40-1206 0.9 40 1.2 3.3 3.4 2.59 6 220 54 0.28
JK42HM48-1684 0.9 48 1.68 1.65 4.1 4.4 4 250 68 0.35
JK42HM48-1206 0.9 48 1.2 3.3 4 3.17 6 250 68 0.35
JK42HM48-0406 0.9 48 0.4 30 38 3.17 6 250 68 0.35
JK42HM60-1684 0.9 60 1.68 1.65 5 5.5 4 270 106 0.55

###

General Specification
Housing Material Metal
Bearing at Output Ball Bearings
Max.Radial Load(12mm from flange) ≤80N
Max.Shaft Axial Load ≤30N
Radial Play of Shaft (near to Flange) ≤0.06mm
Axial Play of Shaft ≤0.3mm
Backlash at No-load 1.5°

###

42HSP Planetary Gearbox Parameters
Reduction ratio 3.71 5.18 13.76 19.2 26.8 51 71 99.5 139
Number of gear trains 1 2 3
Length(L2): mm 27.3 35 42.7
Max.rated torque: kg.cm 20 30 40
Short time permissible torque: kg.cm 40 60 80
Weight: g 350 450 550

###

General Specification
Housing Material Metal
Bearing at Output Ball Bearings
Max.Radial Load(12mm from flange) ≤20N
Max.Shaft Axial Load ≤15N
Radial Play of Shaft (near to Flange) ≤0.06mm
Axial Play of Shaft ≤0.3mm
Backlash at No-load 1.5°

###

42HSG Planetary Gearbox Parameters
Reduction ratio 5 10 15 20
Number of gear trains 1 2
(L2)Length: (mm) 28.5
Peak torque: (kg.cm) 10
Backlash at Noload: (°) 4deg 3deg

###

PLE42-L1 Electrical Specification:
Specification PLE42-L1
Model PLE42-03 PLE42-04 PLE42-05 PLE42-07 PLE42-010
Reduction Ratio 3:01 4:01 5:01 7:01 10:01
Output Torque 8N.m 9N.m 9N.m 5N.m 5N.m
Fail-stop Torque 16N.m 18N.m 18N.m 10N.m 10N.m
Suitable Motor Φ5-10 / Φ22-2 / F31-M3
Rated Input Speed 3000min-1
Max Input Speed 6000min-1
Average Lifespan 20000h
Backlash ≤15arcmin
Efficiency 0.96
Noise ≤55dB
Work Temperature -10°~+90°
Degree of Protection IP54
Weight 0.25kg

###

PLE42-L2 Electrical Specification:
Specification PLE42-L2
Model PLE42-012 PLE42-015 PLE42-016 PLE42-020 PLE42-025 PLE42-028
Reduction Ratio 12:01 15:01 16:01 20:01 25:01:00 28:01:00
Output Torque 10N.m 10N.m 12N.m 12N.m 10N.m 10N.m
Fail-stop Torque 20N.m 20N.m 24N.m 24N.m 20N.m 20N.m
Model PLE42-035 PLE42-040 PLE42-050 PLE42-070 PLE42-100 /
Reduction Ratio 35:01:00 40:01:00 50:01:00 70:01:00 100:01:00 /
Output Torque 10N.m 10N.m 10N.m 10N.m 10N.m /
Fail-stop Torque 20N.m 20N.m 20N.m 20N.m 20N.m /
Suitable Motor Φ5-10 / Φ22-2 / F31-M3
Rated Input Speed 3000min-1
Max Input Speed 6000min-1
Average Lifespan 20000h
Backlash ≤20arcmin
Efficiency 94%
Noise ≤55dB
Work Temperature -10°~+90°
Degree of Protection IP54
Weight 0.35kg

###

Motor series Phase No. Step angle Motor length Motor size Leads No. Holding torque
Nema 8 2 phase 1.8 degree 30~42mm 20x20mm 4 180~300g.cm
Nema 11 2 phase 1.8 degree 32~51mm 28x28mm 4 or 6 430~1200g.cm
Nema 14 2 phase 0.9 or 1.8 degree 27~42mm 35x35mm 4 1000~2000g.cm
Nema 16 2 phase 1.8 degree 20~44mm 39x39mm 4 or 6 650~2800g.cm
Nema 17 2 phase 0.9 or 1.8 degree 25~60mm 42x42mm 4 or 6 1.5~7.3kg.cm
Nema 23 2 phase 0.9 or 1.8 degree 41~112mm 57x57mm 4 or 6 or 8 0.39~3.1N.m
3 phase 1.2 degree 42~79mm 57x57mm 0.45~1.5N.m
Nema 24 2 phase 1.8 degree 56~111mm 60x60mm 8 1.17~4.5N.m
Nema 34 2 phase 1.8 degree 67~155mm 86x86mm 4 or 8 3.4~12.2N.m
3 phase 1.2 degree 65~150mm 86x86mm 2~7N.m
Nema 42 2 phase 1.8 degree 99~201mm 110x110mm 4 11.2~28N.m
3 phase 1.2 degree 134~285mm 110x110mm 8~25N.m
Nema 52 2 phase 1.8 degree 173~285mm 130x130mm 4 13.3~22.5N.m
3 phase 1.2 degree 173~285mm 130x130mm 13.3~22.5N.m
Above only for representative products, products of special request can be made according to the customer request.

/ Piece
|
10 Pieces

(Min. Order)

###

Shipping Cost:

Estimated freight per unit.



To be negotiated

###

Application: Printing Equipment
Speed: Variable Speed
Number of Stator: Two-Phase

###

Samples:
US$ 8.69/Piece
1 Piece(Min.Order)

|

Order Sample

need to confirm the cost with seller

###

Customization:
Available

|


###

Genaral Specification
Item Specifications
Step Angle 1.8° or 0.9°
Temperature Rise 80ºCmax
Ambient Temperature -20ºC~+50ºC
Insulation Resistance 100 MΩ Min. ,500VDC
Dielectric Strength 500VAC for 1minute
Shaft Radial Play 0.02Max. (450g-load)
Shaft Axial Play 0.08Max. (450g-load)
Max. radial force 28N (20mm from the flange)
Max. axial force 10N

###

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Mass
( °) (L)mm A Ω mH kg.cm No. g.cm g.cm2 Kg
JK42HS25-0404 1.8 25 0.4 24 36 1.8 4 75 20 0.15
JK42HS28-0504 1.8 28 0.5 20 21 1.5 4 85 24 0.22
JK42HS34-1334 1.8 34 1.33 2.1 2.5 2.2 4 120 34 0.22
JK42HS34-0406 1.8 34 0.4 24 15 1.6 6 120 34 0.22
JK42HS34-0956 1.8 34 0.95 4.2 2.5 1.6 6 120 34 0.22
JK42HS40-0406 1.8 40 0.4 30 30 2.6 6 150 54 0.28
JK42HS40-1684 1.8 40 1.68 1.65 3.2 3.6 4 150 54 0.28
JK42HS40-1206 1.8 40 1.2 3 2.7 2.9 6 150 54 0.28
JK42HS48-0406 1.8 48 0.4 30 25 3.1 6 260 68 0.35
JK42HS48-1684 1.8 48 1.68 1.65 2.8 4.4 4 260 68 0.35
JK42HS48-1206 1.8 48 1.2 3.3 2.8 3.17 6 260 68 0.35
JK42HS60-0406 1.8 60 0.4 30 39 6.5 6 280 102 0.5
JK42HS60-1704 1.8 60 1.7 3 6.2 7.3 4 280 102 0.5
JK42HS60-1206 1.8 60 1.2 6 7 5.6 6 280 102 0.5

###

Model No. Step Angle Motor Length Current Resistance Inductance Holding Torque # of Leads Detent Torque Rotor Inertia Motor
( °) (L)mm A Ω mH kg.cm No. g.cm g.cm2 Kg
JK42HM34-1334 0.9 34 1.33 2.1 4.2 2.2 4 200 35 0.22
JK42HM34-0316 0.9 34 0.31 38.5 33 1.58 6 200 35 0.22
JK42HM34-0956 0.9 34 0.95 4.2 4 1.58 6 200 35 0.22
JK42HM40-1684 0.9 40 1.68 1.65 3.2 3.3 4 220 54 0.28
JK42HM40-0406 0.9 40 0.4 30 30 2.59 6 220 54 0.28
JK42HM40-1206 0.9 40 1.2 3.3 3.4 2.59 6 220 54 0.28
JK42HM48-1684 0.9 48 1.68 1.65 4.1 4.4 4 250 68 0.35
JK42HM48-1206 0.9 48 1.2 3.3 4 3.17 6 250 68 0.35
JK42HM48-0406 0.9 48 0.4 30 38 3.17 6 250 68 0.35
JK42HM60-1684 0.9 60 1.68 1.65 5 5.5 4 270 106 0.55

###

General Specification
Housing Material Metal
Bearing at Output Ball Bearings
Max.Radial Load(12mm from flange) ≤80N
Max.Shaft Axial Load ≤30N
Radial Play of Shaft (near to Flange) ≤0.06mm
Axial Play of Shaft ≤0.3mm
Backlash at No-load 1.5°

###

42HSP Planetary Gearbox Parameters
Reduction ratio 3.71 5.18 13.76 19.2 26.8 51 71 99.5 139
Number of gear trains 1 2 3
Length(L2): mm 27.3 35 42.7
Max.rated torque: kg.cm 20 30 40
Short time permissible torque: kg.cm 40 60 80
Weight: g 350 450 550

###

General Specification
Housing Material Metal
Bearing at Output Ball Bearings
Max.Radial Load(12mm from flange) ≤20N
Max.Shaft Axial Load ≤15N
Radial Play of Shaft (near to Flange) ≤0.06mm
Axial Play of Shaft ≤0.3mm
Backlash at No-load 1.5°

###

42HSG Planetary Gearbox Parameters
Reduction ratio 5 10 15 20
Number of gear trains 1 2
(L2)Length: (mm) 28.5
Peak torque: (kg.cm) 10
Backlash at Noload: (°) 4deg 3deg

###

PLE42-L1 Electrical Specification:
Specification PLE42-L1
Model PLE42-03 PLE42-04 PLE42-05 PLE42-07 PLE42-010
Reduction Ratio 3:01 4:01 5:01 7:01 10:01
Output Torque 8N.m 9N.m 9N.m 5N.m 5N.m
Fail-stop Torque 16N.m 18N.m 18N.m 10N.m 10N.m
Suitable Motor Φ5-10 / Φ22-2 / F31-M3
Rated Input Speed 3000min-1
Max Input Speed 6000min-1
Average Lifespan 20000h
Backlash ≤15arcmin
Efficiency 0.96
Noise ≤55dB
Work Temperature -10°~+90°
Degree of Protection IP54
Weight 0.25kg

###

PLE42-L2 Electrical Specification:
Specification PLE42-L2
Model PLE42-012 PLE42-015 PLE42-016 PLE42-020 PLE42-025 PLE42-028
Reduction Ratio 12:01 15:01 16:01 20:01 25:01:00 28:01:00
Output Torque 10N.m 10N.m 12N.m 12N.m 10N.m 10N.m
Fail-stop Torque 20N.m 20N.m 24N.m 24N.m 20N.m 20N.m
Model PLE42-035 PLE42-040 PLE42-050 PLE42-070 PLE42-100 /
Reduction Ratio 35:01:00 40:01:00 50:01:00 70:01:00 100:01:00 /
Output Torque 10N.m 10N.m 10N.m 10N.m 10N.m /
Fail-stop Torque 20N.m 20N.m 20N.m 20N.m 20N.m /
Suitable Motor Φ5-10 / Φ22-2 / F31-M3
Rated Input Speed 3000min-1
Max Input Speed 6000min-1
Average Lifespan 20000h
Backlash ≤20arcmin
Efficiency 94%
Noise ≤55dB
Work Temperature -10°~+90°
Degree of Protection IP54
Weight 0.35kg

###

Motor series Phase No. Step angle Motor length Motor size Leads No. Holding torque
Nema 8 2 phase 1.8 degree 30~42mm 20x20mm 4 180~300g.cm
Nema 11 2 phase 1.8 degree 32~51mm 28x28mm 4 or 6 430~1200g.cm
Nema 14 2 phase 0.9 or 1.8 degree 27~42mm 35x35mm 4 1000~2000g.cm
Nema 16 2 phase 1.8 degree 20~44mm 39x39mm 4 or 6 650~2800g.cm
Nema 17 2 phase 0.9 or 1.8 degree 25~60mm 42x42mm 4 or 6 1.5~7.3kg.cm
Nema 23 2 phase 0.9 or 1.8 degree 41~112mm 57x57mm 4 or 6 or 8 0.39~3.1N.m
3 phase 1.2 degree 42~79mm 57x57mm 0.45~1.5N.m
Nema 24 2 phase 1.8 degree 56~111mm 60x60mm 8 1.17~4.5N.m
Nema 34 2 phase 1.8 degree 67~155mm 86x86mm 4 or 8 3.4~12.2N.m
3 phase 1.2 degree 65~150mm 86x86mm 2~7N.m
Nema 42 2 phase 1.8 degree 99~201mm 110x110mm 4 11.2~28N.m
3 phase 1.2 degree 134~285mm 110x110mm 8~25N.m
Nema 52 2 phase 1.8 degree 173~285mm 130x130mm 4 13.3~22.5N.m
3 phase 1.2 degree 173~285mm 130x130mm 13.3~22.5N.m
Above only for representative products, products of special request can be made according to the customer request.

How to Select a Gear Motor

A gearmotor is an electrical machine that transfers energy from one place to another. There are many types of gearmotors. This article will discuss the types of gearmotors, including Angular geared motors, Planetary gearboxes, Hydraulic gear motors, and Croise motors. In addition to its uses, gearmotors have many different characteristics. In addition, each type has distinct advantages and disadvantages. Listed below are a few tips on selecting a gearmotor.

Angular geared motors

Angular geared motors are the optimum drive element for applications where torques, forces, and motions need to be transferred at an angle. Compared to other types of geared motors, these have few moving parts, a compact design, and a long life. Angular geared motors are also highly efficient in travel drive applications. In addition to their durability, they have a low maintenance requirement and are highly corrosion-resistant.
Helical worm geared motors are a low-cost solution for drives that employ angular geared motors. They combine a worm gear stage and helical input stage to offer higher efficiency than pure worm geared motors. This drive solution is highly reliable and noise-free. Angular geared motors are often used in applications where noise is an issue, and helical worm geared motors are particularly quiet.
The gear ratio of an angular geared motor depends on the ratio between its input and output shaft. A high-quality helical geared motor has a relatively low mechanical noise level, and can be installed in almost any space. The torque of a helical geared motor can be measured by using frequency measurement equipment. The energy efficiency of angular geared motors is one of the most important factors when choosing a motor. Its symmetrical arrangement also allows it to operate in low-speed environments.
When selecting the right angular geared motor, it is important to keep in mind that increased torque will lead to poor output performance. Once a gear motor reaches its stall torque, it will no longer function properly. This makes it important to consult a performance curve to choose the appropriate motor. Most DC motor manufacturers are more than happy to provide these to customers upon request. Angular geared motors are more expensive than conventional worm gear motors.
Motor

Planetary gearboxes

Planetary gearboxes are used in industrial machinery to generate higher torque and power density. There are three main types of planetary gearboxes: double stage, triple stage, and multistage. The central sun gear transfers torque to a group of planetary gears, while the outer ring and spindle provide drive to the motor. The design of planetary gearboxes delivers up to 97% of the power input.
The compact size of planetary gears results in excellent heat dissipation. In some applications, lubrication is necessary to improve durability. Nevertheless, if you are looking for high speed transmission, you should consider the additional features, such as low noise, corrosion resistance, and construction. Some constructors are better than others. Some are quick to respond, while others are unable to ship their products in a timely fashion.
The main benefit of a planetary gearbox is its compact design. Its lightweight design makes it easy to install, and the efficiency of planetary gearboxes is up to 0.98%. Another benefit of planetary gearboxes is their high torque capacity. These gearboxes are also able to work in applications with limited space. Most modern automatic transmissions in the automotive industry use planetary gears.
In addition to being low in cost, planetary gearboxes are a great choice for many applications. Neugart offers both compact and right angle versions. The right angle design offers a high power-to-weight ratio, making it ideal for applications where torque is needed to be transmitted in reverse mode. So if you’re looking for an efficient way to move heavy machinery around, planetary gearboxes can be a great choice.
Another advantage of planetary gearboxes is their ability to be easily and rapidly changed from one application to another. Since planetary gears are designed to be flexible, you don’t have to buy new ones if you need to change gear ratios. You can also use planetary gears in different industries and save on safety stock by sharing common parts. These gears are able to withstand high shock loads and demanding conditions.
Motor

Hydraulic gear motors

Hydraulic gear motors are driven by oil that is pumped into a gear box and causes the gears to rotate. This method of energy production is quiet and inexpensive. The main drawbacks of hydraulic gear motors are that they are noisy and inefficient at low speeds. The other two types of hydraulic motors are piston and vane-type hydraulic motors. The following are some common benefits of hydraulic gear motors.
A hydraulic gear motor is composed of two gears – a driven gear and an idler. The driven gear is attached to the output shaft via a key. High-pressure oil flows into the housing between the gear tips and the motor housing, and the oil then exits through an outlet port. Unlike a conventional gear motor, the gears mesh to prevent the oil from flowing backward. As a result, they are an excellent choice for agricultural and industrial applications.
The most common hydraulic gear motors feature a gerotor and a drive gear. These gears mesh with a larger gear to produce rotation. There are also three basic variations of gear motors: roller-gerotor, gerotor, and differential. The latter produces higher torque and less friction than the previous two. These differences make it difficult to choose which type is the best for your needs. A high-performance gear motor will last longer than an ordinary one.
Radial piston hydraulic motors operate in the opposite direction to the reciprocating shaft of an electric gearmotor. They have nine pistons arranged around a common center line. Fluid pressure causes the pistons to reciprocate, and when they are stationary, the pistons push the fluid out and move back in. Because of the high pressure created by the fluid, they can rotate at speeds up to 25,000RPM. In addition, hydraulic gear motors are highly efficient, allowing them to be used in a wide range of industrial and commercial applications.
Hydraulic gear motors complement hydraulic pumps and motors. They are also available in reversible models. To choose the right hydraulic motor for your project, take time to gather all the necessary information about the installation process. Some types require specialized expertise or complicated installation. Also, there are some differences between closed and open-loop hydraulic motors. Make sure to discuss the options with a professional before you make a decision.
Motor

Croise motors

There are many advantages to choosing a Croise gear motor. It is highly compact, with less weight and space than standard motors. Its right-angle shaft and worm gear provide smooth, quiet operation. A silent-type brake ensures no metallic sound during operation. It also offers excellent positioning accuracy and shock resistance. This is why this motor is ideal for high-frequency applications. Let’s take a closer look.
A properly matched gearmotor will provide maximum torque output in a specified period. Its maximum developing torque is typically the rated output torque. A one-twelfth-horsepower (1/8 horsepower) motor can meet torque requirements of six inch-pounds, without exceeding its breakdown rating. This lower-cost unit allows for production variations and allows the customer to use a less powerful motor. Croise gear motors are available in a variety of styles.

China 12V 24V 2 Phase Hybrid Linear Step Stepper Stepping Motor NEMA 17 23 34 with Planetary Gearbox / Brake / Encoder / Integrated Driver for 3D Printer Xyz Laser     with Best SalesChina 12V 24V 2 Phase Hybrid Linear Step Stepper Stepping Motor NEMA 17 23 34 with Planetary Gearbox / Brake / Encoder / Integrated Driver for 3D Printer Xyz Laser     with Best Sales
editor by CX 2023-03-27